

VOICE DRIVEN

INTERACTION IN XR

SPACES VOICE DRIVEN

INTERACTION IN XR

SPACES

Model Deployment Analysis V2
WP 4
30/06/2025

30 JUNE 2025 VOICE DRIVEN INTERACTION IN XR SPACES VOICE
DRIVEN INTERACTION IN XR SPACES / 2

Dissemination Level

PU Public

PP Restricted to other programme participants (Including the Commission Services)

RE Restricted to a group specified by the consortium (Including the Commission Services)

CO Confidential, only for members of the consortium (Including the Commission Services)

Nature

PR Prototype

RE Report

SP Specification

TO Tool

OT Other

Version 2.0

WP 4

Dissemination level Public

Deliverable lead SYN

Authors Ioannis Oikonomidis, Ntinos Prousalidis (SYN), Athanasios

Ntovas, Georgios Papadopoulos, Sotiris Karavarsamis, Stefanos

Biliousis, Dimitrios Pattas, Petros Drakoulis, Alexandros

Doumanoglou, Dimitris Zarpalas (CERTH), Yusuf Can Semerci

(UM), Leesa Joyce, Gabriele Princiotta (HOLO), Olga Chatzifoti

(MAG)

Reviewers Manuel Toledo (VRDays), Spiros Borotis (MAG)

Abstract

Keywords Model Deployment, Model Sharing, Deployment Guidelines,

once-for-all Training, Inference Optimization, Interactive XR

Application Development

License

This work is licensed under a Creative Commons Attribution-No

Derivatives 4.0 International License (CC BY-ND 4.0). See:

https://creativecommons.org/licenses/by-nd/4.0/

https://creativecommons.org/licenses/by-nd/4.0/

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 3

Version History

Version Date Owner Editor(s)
Changes to previous
version

0.1 2025-05-01 SYN Ntinos Prousalidis
Ioannis Oikonimidis

ToC released

0.2 2025-05-02 SYN Ntinos Prousalidis ,
Ioannis Oikonimidis

Added in Sec. 4.1

0.3 2025-05-28 CERTH Athanasios Ntovas,
Petros Drakoulis

Added in Sec. 2

0.4 2025-05-28 HOLO Leesa Joyce,
Gabriele Princiotta

Added in Sec. 4.3

0.5 2025-06-13 MAG Olga Chatzifoti Added in Sec. 4.2

0.6 2025-06-13 UM Yusuf Can Semerci Contribution to Sec 2, 3,
4

1.1 2025-06-13 SYN Ntinos Prousalidis Added Executive
Summary and
Introduction; performed
editing

1.2 2025-06-30 VRD Manuel Toledo Internal review complete

1.21 2025-06-30 MAG Spiros Borotis Internal review complete

1.3 2025-06-30 SYN Ntinos Prousalidis Revisions Complete

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 4

Table of Contents

Version History.. 3

Table of Contents .. 4

List of Abbreviations & Acronyms .. 6

List of Figures ... 8

List of Tables .. 11

Executive Summary .. 12

1 Introduction .. 12

1.1 Intended Audience ... 13

1.2 Relations to the other activities .. 14

1.3 Document Structure ... 14

2 Model Training and Inference Optimization .. 14

2.1 Foundational Concepts of Model Optimization ... 15

2.2 Overview of State-of-the-Art Methods .. 17

2.2.1 The Once-for-All Concept and its Variants ... 18

2.3 The VOXReality Model Optimization Approach .. 22

2.3.1 Aiming and Background ... 22

2.3.2 Matrix Decomposition .. 23

2.3.3 SVD Synthesis ... 27

2.3.4 Future Work ... 29

2.4 VOXReality models ONNX repository .. 29

3 Model Deployment and Sharing ... 31

3.1 Deployment of VOXReality AI Models in Development Server 32

3.2 Deployment Guidelines .. 37

3.2.1 Source code-Based Deployment ... 37

3.2.2 Container-Based Deployment .. 38

3.2.2.1 Deployment using Docker Hub Images .. 39

3.2.2.2 Deployment using Docker Compose .. 40

3.3 Model Sharing ... 41

4 VOXReality XR Applications .. 44

4.1 Virtual Reality (VR) Conference ... 44

4.1.1 System Architecture and Design .. 44

4.1.1.1 3D Models and Scenes Design .. 44

4.1.1.2 Application Workflow Diagram ... 45

4.1.2 Implementation Details .. 54

4.1.2.1 Development Environment Setup ... 54

4.1.2.2 3D Models and Scene Creation.. 55

4.1.2.3 Core Algorithms and Techniques ... 57

4.1.2.4 User Interface Implementation ... 58

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 5

4.1.2.5 Summary of Achieved User Requirements ... 63

4.2 Augmented Reality Theatre ... 66

4.2.1 System Architecture and Design .. 69

4.2.1.1 3D Models and Scenes Design .. 71

4.2.1.2 Application Workflow Diagram ... 74

4.2.2 Implementation Details .. 75

4.2.2.1 Development Environment Setup ... 75

4.2.2.2 3D Models and Scene Creation.. 77

4.2.2.3 Core Algorithms and Techniques ... 79

4.2.2.3.1 Transcription .. 79

4.2.2.3.2 Vision language ... 82

4.2.2.3.3 Translation ... 82

4.2.2.3.4 VFX triggering logic ... 83

4.2.2.4 User Interface Implementation ... 85

4.2.2.4.1 AR Theater control server .. 85

4.2.2.4.2 AR Theater AR client ... 92

4.2.2.4.3 AR Theatre audio player client ... 97

4.2.2.5 Summary of Achieved User Requirements ... 98

4.3 Training Assistant .. 102

4.3.1 System Architecture and Design .. 102

4.3.1.1 3D Models and Scenes Design/Creation .. 102

4.3.1.2 Application Workflow Diagram ... 104

4.3.2 Implementation Details .. 108

4.3.2.1 Development Environment Setup ... 108

4.3.2.2 Core Algorithms and Techniques ... 109

4.3.2.3 User Interface Implementation ... 112

4.3.2.4 Summary of Achieved User Requirements ... 118

5 Conclusions ... 122

6 References .. 124

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 6

List of Abbreviations & Acronyms

ADB : Android Debug Bridge

AI : Artificial Intelligence

AMD : Advanced Micro Devices

API : Application Programming Interface

ASR : Automatic Speech Recognition

BERT : Bidirectional Encoder Representations

BLEU : Bilingual Evaluation Understudy

CAD : Computer-Aided-Design

CI/CD : Continuous Integration/ Continuous Deployment

CLI : Command Line Interface

CNN : Convolutional Neural Network

CO2 : Carbon dioxide

CPU : Central Processing Unit

CUDA : Compute Unified Device Architecture

CV : Computer Vision

DA : Dialogue Agent

DE : German (language)

DFO : Derivative-Free Optimization

DNN : Deep Neural Network

NL : Dutch (language)

ECS : Entity-Component-System

EN : English (language)

ES : Spanish (language)

FLOPS : Floating Point Operations Per Second

FOV : Field of View

FP : Floating Point

GPT2 : Generative Pretrained Transformer 2

GPU : Graphics processing unit

EL : Greek (language)

IT : Italic (language)

ML : Machine Learning

MLP : Multilayer Perceptron

NLG : Natural Language Generation

NLP : Natural Language Processing

NLU : Natural Language Understanding

NMT : Neural Machine Translation

NN : Neural Network

OBS : Open Broadcaster Software

OFA : Once-For-All

ONNX : Open Neural Network Exchange

OS : Operating System

QAT : Quantization-Aware Training

RAM : Random-Access Memory

REST : Representational State Transfer

RNN : Recurrent Neural Networks

ROUGE : Recall-Oriented Understudy for Gisting Evaluation

SAST : Static application security testing

SDK : Software Development Kit

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 7

SIMD : Single Instruction, Multiple Data

SOTA : State-of-Art

SVD : Singular Value Decomposition

UI : User Interface

UVC : Unified Visual Transformers Compression

VFX : visual effects

ViT : Vision Transformers

VL : Vision-Language

VR : Virtual Reality

WCAG : Web Content Accessibility Guidelines

WebGL : Web Graphics Library

webRTC : Web Real-Time Communications

WP : Work Package

XR : eXtended Reality

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 8

List of Figures

Figure 1. Conventional pruning framework VS Proposed pruning framework [3] 17
Figure 2. The compression scheme of [4]. ... 17
Figure 3. The compression scheme of MiniViT [6] ... 18
Figure 4. Train the network once and extract the appropriate sub-network for each different

hardware setup. .. 19
Figure 5. Illustration of the progressive shrinking process for CCNs to support different depth D,

width, W, kernel size K and resolution R. .. 19
Figure 6. The two-stage procedure to train with DynaBert. .. 20
Figure 7. The Prune OFA training scheme. .. 21
Figure 8. Detailed transformer block in an AutoFormer structure with all changeable

parameters. ... 21
Figure 9. The values of the changeable dimensions. Tuples of three values in parentheses

represent the lowest value, the highest value, and step of each tunable parameter. 22
Figure 10. Classical weight sharing (left) vs. Weight entanglement of AutoFormer (right). 22
Figure 11. The Singular Value Decomposition (SVD) basic principle. 24
Figure 12. NaVQA evaluation accuracy for adaptive SVD and Kronecker decompositions

across different Reduction Rates. ... 27
Figure 13. Loading an SVD Synthesized model in Python. .. 28
Figure 14. The VOXReality HuggingFace repository. .. 30
Figure 15. Example of Dockerfile. .. 33
Figure 16. GitLab CI/CD Add variable. ... 33
Figure 17. GitLab CI/CD Repository Variables. .. 34
Figure 18. Template of .gitlab-ci.yaml file .. 35
Figure 19. GitLab CI/CD Pipeline when push to main. ... 35
Figure 20. GitLab CI/CD Create a new tag. ... 36
Figure 21. GitLab CI/CD Pipeline when create a new tag. ... 36
Figure 22. VOXReality DockerHub. ... 39
Figure 23. Example of docker-compose.yml file... 40
Figure 24. VOXReality Hugging Face repository.. 42
Figure 25. Workflow for communication with the Virtual Agent. .. 46
Figure 26. Workflow for communication with the Virtual Agent. .. 48
Figure 27. Weighted Graph with Manhattan Distance and Non-Diagonal Connectivity 49
Figure 28. Workflow of Navigation Request Handling Using LLM and Dijkstra’s Algorithm 50
Figure 29. The way Angle and Distance change as the user arrives-to or crossing an object.

The correct detection of these two events is crucial for the creation of the navigation dataset.

 ... 51
Figure 30. Workflow of the translation system. .. 52
Figure 31. Blender Interface for room designing. ... 55
Figure 32. Blender Interface for shading. ... 56
Figure 33. Mozilla’s Spoke Interface. ... 57
Figure 34. User Panel element. ... 59
Figure 35. Map Component for the Trade Show Area. ... 59
Figure 36. Help slides. ... 60
Figure 37. Translate Button element. ... 61
Figure 38. Virtual Agent Panel (Left), Translation Panel (Right). .. 62
Figure 39. Loading animation. ... 62
Figure 40. AR Theatre system - high level overview .. 67
Figure 41. VFX triggering methods using verbal and visual cues ... 68
Figure 42. AR Theatre architecture - detailed version .. 69
Figure 43. Use of NMT service in AR Theatre ... 70
Figure 44. AR Theatre architecture - extended version .. 71
Figure 45. Storyboard excerpts .. 72

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 9

Figure 46. From storyboard to final assets over iterations .. 73
Figure 47. Matching the physical and digital space elements in the scene design 73
Figure 48. Data logging plan .. 75
Figure 49. Development tools: Magic Leap Hub 3 ... 77
Figure 50. Development methods: diagrams and mockups for multidisciplinary collaboration.. 77
Figure 51. Custom created 3D model using Blender with hand-painted textures 78
Figure 52. Procedural Visual Effects using Unity's Visual Graph.. 79
Figure 53. ASR upload subtitle endpoint .. 80
Figure 54. ASR Upload subtitle csv sample ... 80
Figure 55. ASR streaming and matching parameter configuration ... 80
Figure 56. Quality assurance methods: confidence-based filtering and error correction........... 81
Figure 57. Contextual translation endpoint... 83
Figure 58. Contextual translation code block ... 83
Figure 59. Sample of translated lyrics across the VOXReality languages 83
Figure 60. Sample of VFX plan in csv format ... 84
Figure 61. Example of a VFX trigger method and its result .. 84
Figure 62. AR Theatre Server - Network tab .. 85
Figure 63. AR Theatre Server - Download tab ... 86
Figure 64. AR Theatre Server - Content sample .. 86
Figure 65. AR Theatre Server - Preview tab .. 87
Figure 66. AR Theatre Server - AI Services tab ... 87
Figure 67. AR Theatre Server - AI-Audio tab: Streaming settings .. 88
Figure 68. AR Theatre Server - AI-Audio tab: ASR response log & WebSocket messages 89
Figure 69. AR Theatre Server - AI-Audio tab: summary of configurable parameters 89
Figure 70. AR Theatre Server - AI-Vision tab – VQA with no stage event detected 90
Figure 71. AR Theatre Server - AI-Vision tab – VQA with stage event detected 90
Figure 72. AR Theatre Server - VFX tab .. 91
Figure 73. AR Theatre - Systems for Pilot 2 conditions .. 91
Figure 74. AR Theatre Server - Interfaces for manual and AI mode .. 92
Figure 75. AR Theatre Server - manual mode interface setup ... 92
Figure 76. AR Client - Language selection menu ... 93
Figure 77. AR Client - Introduction to AR device .. 93
Figure 78. AR client – Menu panel with scene selection .. 94
Figure 79. AR Client - Tutorial to application .. 95
Figure 80. AR Client - Subtitles customization menu ... 95
Figure 81. AR client - Extras scene content ... 96
Figure 82. AR Client - Start of performance ... 96
Figure 83. AR Client - Sample scene of performance featuring captions and triggered VFX 97
Figure 84. AR Theatre audio player user interface ... 98
Figure 85. 3D scene with Raptor engine on the left and the table on the right 102
Figure 86. 3D scene with table and interactive objects – grabbed object in green and

destination in yellow with a green guiding line. Object has a tool tip. 103
Figure 87. The screwing logic with audio feedback .. 103
Figure 88. 3D scene with table, Raptor engine and assembly ... 104
Figure 89. 3D scene with table and display panel with a video being played. 104
Figure 90. Training Assistant application workflow ... 105
Figure 91. The logical scheme of the training steps in Free Mode. .. 107
Figure 92. The ASR transcription endpoint .. 109
Figure 93. Scheme showing ARTA behaviour based on the user requests (Questions in green

and Commands in red) and the other parameters ... 111
Figure 94. Examples of responses to user’s questions .. 112
Figure 95. DA’s response to user’s request for help through video and hint 112
Figure 96. Example of object tooltip ... 113
Figure 97. The display panel with visual feedback ... 113

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 10

Figure 98. The display panel with feedback on action performed by Voxy and the listening

feedback with green mic and green Voxy avatar ... 114
Figure 99. The tutorial with guidance for the user regarding MRTK commands 115
Figure 100. The tutorial with guidance regarding the cheat sheet .. 115
Figure 101. The tutorial with guidance regarding the application logic 116
Figure 102. The tutorial with practice sessions on voice interaction 116
Figure 103. The blue popup panel giving user feedback regarding the replacement of the

misplaced object ... 117
Figure 104. The blue popup panel giving user feedback regarding an action that cannot be

logically performed .. 117

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 11

List of Tables

Table 1. The theoretical maximum Reduction Rate of various VOXReality models. 25
Table 2. Evaluation accuracy (BLEU) of Uniform and Adaptive SVD. 26
Table 3. Different compression profiles for NaVQA. .. 28
Table 4. VOXReality models and their inference-time (ms) across various file formats,

weight-quantization schemes and host device-types. ... 29
Table 5. VOXReality components used in each use case. .. 44
Table 6. VR Conference. Achievement of user requirements .. 63
Table 7. AR Theatre - Achieved user requirements ... 98
Table 8. The association between step number, training object, and the related manual

instructions ... 107
Table 9. Development Environment Specifications – Hardware .. 108
Table 10. Development Environment Specifications – Software .. 108
Table 11. Achievement of User Requirements .. 118

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 12

Executive Summary

This document presents the final outcomes of the VOXReality project in relation to the training,

optimization, deployment, and sharing of its AI models, as well as the implementation of the

VOXReality eXtended Reality (XR) applications. It provides a detailed retrospective analysis

of the adopted “once-for-all” (OFA) training methodology, along with the optimization

techniques that were applied to reduce model size and computational requirements while

preserving performance. The VOXReality model optimization approach, developed during the

project, successfully supported model pruning, quantization, and export to common formats

such as ONNX, facilitating deployment across diverse hardware platforms.

The document also reports experimental results validating the effectiveness of the

implemented optimization strategies. Deployment and sharing mechanisms for the pretrained

AI models were defined and realized, including source code-based deployment and

containerized solutions, ensuring accessibility, portability, and reproducibility. Furthermore,

the document defines the deployment and sharing options for the pretrained VOXReality AI

models, providing clear guidelines on effective deployment and access, including source

code-based deployment and containerization strategies. It also includes the architecture,

design principles, and implementation details of VOXReality's XR applications, specifically the

VR Conferences, Augmented Theatre, and Training Assistant.

1 Introduction

The rapid growth of Deep Neural Networks (DNN) has led to architectures with hundreds of

millions of parameters, demonstrating significant challenges in training and inference

processes. Those challenges are intensifying when the models are deployed in resource-

constrained devices, like edge devices or mobile phones. Specifically, the training phase of

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 13

these AI models demands high computational resources, being particularly time-consuming

and power intensive. In addition, the inference of these models requires significant computing

power and can be time-consuming, particularly on devices with limited processing capabilities,

making inference optimization essential for fast and efficient performance. Transformer

models fall into this category of computationally intensive architectures, thus requiring a focus

on training and inference optimization to ensure their efficient and effective use during the

deployment.

VOXReality implemented advanced Natural Language Processing (NLP) models based on

transformer architecture. Therefore, it was crucial to overcome these computational

challenges through innovative strategies, ensuring that these AI models are not only powerful

but also practical for deployment in various hardware environments, including those with

limited resources. In VOXReality, we addressed those challenges by exploring the “once-for-

all” (OFA) training concept, allowing for the efficient creation of sub-networks tailored to

specific hardware and use cases. Additionally, we implemented an optimization tool that

employs different techniques like pruning and quantization. This tool also facilitates the export

of AI models into common formats like ONNX, enhancing their adaptability.

Ensuring that AI models are effectively utilized in real-world scenarios was a critical aspect.

VOXReality addressed this by offering a variety of deployment options to facilitate the easy

and efficient use of AI models across different platforms, from edge devices to cloud servers.

The adaptability of these models was further enhanced by VOXReality's comprehensive

deployment guidelines, which assisted the integration of AI technologies across various

applications. Furthermore, the VOXReality AI models are shared on the Hugging Face

platform, to promote wider adoption and to invite external developers to expand and refine

these models, thus fostering innovation and broadening the scope of their AI solutions.

The VOXReality AI models were deployed in three distinct use cases: Virtual Reality (VR)

Conference, Augmented Reality (AR) Theatre, and Training Assistant, showcasing the

versatility of these models in XR environments and their ability to create immersive

experiences. The feasibility of implementing these applications would be verified through two

rounds of pilot testing under real-world conditions, demonstrating their practical application

and robustness. The detailed design and implementation of these AI models was meticulously

planned to align with both the user requirements and technical specifications, guaranteeing

that the end solutions are not only innovative but also practical and user centric.

The technical work described in this document was performed in all three tasks of (T4.1, T4.2,

T4.3) of WP4 until the end of the 38th month of VOXReality project. Specifically, Task 4.1

“Model deployment and serving” focuses on the deployment and sharing options of pretrained

VOXReality AI models as well as on the deployment of those models in every use case

scenario. Task 4.2 “Model training & inference optimization” investigates the SOTA methods

for economic model training following the “once-for-all” training approach as well as the

different optimization techniques. Moreover, in this task, tools for “once-for-all” training and

optimization are implemented by VOXReality consortium. Task 4.3 “Novel Interactive XR

Applications” is responsible for developing the XR applications utilizing the VOXReality AI

models in the use cases.

1.1 Intended Audience

The intended audience for this deliverable includes the VOXReality project consortium and

third-party users, consisting of participants in the project's open calls as well as researchers

and AI & XR professionals interested in exploring VOXReality research outputs. The

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 14

document provides the VOXReality optimization approach that could be utilized by the AI

engineers to create cost-effective and energy-efficient AI models, making them suitable for a

wide range of deployment scenarios. Moreover, the provided deployment guidelines can also

be employed by AI engineers and developers to correctly deploy the AI models across various

applications. In addition, the implementation details of VOXReality XR applications can

provide useful information on how technologies can be integrated into various sectors, offering

practical insights for developers looking to adapt these applications to specialized use cases

or environments.

1.2 Relations to the other activities

The VOXReality optimization tool, the deployment guidelines and the model sharing are

strongly dependent on the VOXReality AI models. Therefore, this document is intrinsically

connected with all the tasks of WP3 “Advanced AI muti-model for XR”. Additionally, the model

deployment is closely correlated with the Task 2.3 “Development Infrastructure”. It should be

mentioned that many decisions regarding the implementation of XR applications are made

based on User Requirements and Technical Requirements, extracted from Task 2.1 "User

Requirements" and Task 2.2 "Technical Requirements" respectively as well as by the pilot

planning outlined in Task 5.1 “Planning and Validation”. Finally, this document is linked with

the WP7 “Integration paths” since it offers useful insights into how third-party users from Open

Calls can utilize the research outputs.

1.3 Document Structure

Section 1 provides an introduction of the deliverable’s intended audience as well as an

overview of its content. Section 2 introduces the SOTA algorithms for the “once-for-all” training

approach as well the AI model optimization techniques, providing a detailed background

overview of those topics. Moreover, this section describes the proposed VOXReality two-

stages optimization pipeline that can be applied on the VOXReality AI models. In addition, it

discusses the experimental results obtained from the application of this method. Section 3

details the various deployment methods available for utilizing the AI models, along with

comprehensive deployment guidelines. It also describes the process of model sharing through

the Hugging Face platform. Section 4 includes all the detailed information about VOXReality

XR applications, covering the design and the implementation aspects, such as the

development environment, creation of 3D models and scenes, development and integration

of core algorithms, the various User Interface (UI) elements, etc. Section 5 outlines the

conclusions.

2 Model Training and Inference Optimization

In recent years, Deep Neural Networks (DNN) architectures have become extensively large

with hundreds of millions of parameters. As a consequence, Neural Network (NN) training and

inference phases have become increasingly challenging procedures. Many optimization

techniques have been developed over the years to overcome this, while the growing demand

for deploying neural networks on resource-constrained devices, such as mobile phones and

edge devices, has further underscored the importance of developing efficient optimization

techniques.

Neural networks, in general, require high computational resources due to their complexity

which typically involves a large number of linear algebra operations with high precision

floating-point variables. The training phase in particular is notoriously time-consuming, often

demanding several days to converge to an acceptable solution. Even the inference of these

models can consume significant power, presenting challenges for deployment in energy-

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 15

constrained environments, such as edge devices, which have significantly less computational

power compared to personal computers and servers. Adding to that, mobile devices operate

mostly on batteries, urging developers to optimise the applications to minimize power

consumption and extend the battery life. Furthermore, for applications demanding real-time

responses, such as gaming or communication apps, minimising the execution time becomes

essential to ensure optimal user experience. Based on all the aforementioned, we are led to

the conclusion that neural networks need to be run on a variety of heterogeneous hardware,

each one with different, sometimes unpredictable, constraints.

The main scope of our work was to provide the VOXReality platform with the means to conduct

economical model training and deployment, by exploring a possible adaptation of the “once-

for-all” (OFA) [1]training concept to the project’s models, enabling the extraction of smaller

networks from a single large one, that are conditioned on the constraints of the targeted

deployment platform. In addition to the introduction of our OFA adaptation (SVD Synthesis)

and its corresponding Command Line Tool (CLI), we also developed and released a

secondary CLI tool that enables the weights-quantization of VOXReality models and their

graph-optimization and extraction to the common ONNX1 file format.

All the models that were developed for the three use cases (Augmented Reality Theatre,

Virtual Reality Conference and Training assistant) were Transformer-based [2]. Transformers

are computationally, storage and memory expensive compared to Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs) for a few reasons. Namely,

transformers use a mechanism called attention which involves the investigation of the

relationships between all input tokens. This can be quite demanding computationally,

especially as the input sequence gets longer. Transformers typically hold a large number of

parameters that require extensive memory for storage and processing. While transformers are

great at understanding long-distance connections in data, this comes at the cost of having to

access information from all parts of the input sequence, which further adds to their

computational and memory requirements.

2.1 Foundational Concepts of Model Optimization

Before we get deep into the more advanced concepts, we should first establish some

understanding of the broad families of model-compression techniques available. Various

model optimization techniques such as quantization, pruning, graph optimization and entropy

compression, are long employed to enhance the efficiency and performance of deep learning

models. At a glance, quantization refers to the reduction of the variables’ and operations’

arithmetic precision, reducing the memory requirements and computational complexity of the

network. Pruning and graph optimization remove unnecessary connections and parameters

from the model, and entropy compression losslessly compresses the remaining elements of

the network achieving the smallest possible representation of the model. Subsequently, we

will delve into the various optimization components:

Quantization

Quantization can be equally applied at different stages of the model development process:

Post-training quantization: This is the simplest and most widely used method, where

quantization is applied after the model has been trained with floating-point data. This method

does not require any re-training or fine-tuning, but it may introduce some accuracy loss due

to the reduced precision. Post-training quantization can be further divided into static and

1 https://onnx.ai/

https://onnx.ai/

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 16

dynamic quantization, depending on whether the activations are quantized during inference

or not.

Quantization-aware training (QAT): This is a more advanced method where quantization is

simulated during the training process, and the model parameters are pre-emptively adjusted

in a way to minimize the post-training quantization error. This method can preserve the

accuracy of the original model, but it requires more computational resources and time due to

provisions. QAT can also be further divided into fake and real quantization, depending on

whether the quantization is actually performed during training or not.

Hybrid quantization: This is a hybrid method, where quantization is applied only to some parts

of the model during training, such as the weights or the gradients. This method can reduce

the memory and computational costs of training while maintaining good accuracy.

Pruning

Pruning is a technique that reduces the size and complexity of neural networks by removing

some of their components, such as weights, neurons or layers. Pruning can help improve the

efficiency and speed of Transformer models, which are widely used for natural language

processing and other tasks. There are different types of pruning:

Unstructured pruning: This technique removes individual weights from the model based on

some criteria, such as magnitude or importance. Unstructured pruning can achieve high

compression rates, but it requires sparse matrix operations which are not well supported by

most hardware.

Structured pruning: This technique removes groups of weights that have a regular structure,

such as attention heads, filters or layers. Structured pruning can preserve the original matrix

operations, which are more efficient and compatible with most hardware.

Graph Optimization

Graph optimization involves refining structurally the network's architecture to enhance

efficiency without sacrificing performance. Think of it as reorganising a cluttered workspace to

improve productivity. By identifying and streamlining redundant pathways and operations, the

optimization process reduces computational overhead and memory usage. This results in

faster processing times and more efficient resource utilisation. Ultimately, graph optimization

ensures that the neural network operates more smoothly and effectively, akin to a well-

organised workspace facilitating better workflow and in most cases is platform dependent (e.g.

ONNX).

Entropy compression

Entropy compression refers to the widely and generically used entropy-coding based lossless

compression techniques found in various zip/tar-like products. It can always be used as the

last stage packing for storing and transferring data and thus can be implemented to reduce

the non-working (offline storage) memory of a model. It is implicitly, in some form, already

present in various common model representation formats.

Now that we have set the basis of understanding, we can continue with the prevalent, more

advanced techniques found in modern applications.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 17

2.2 Overview of State-of-the-Art Methods

There is a variety of transformers’ optimization techniques and frameworks currently under

development, signaling further the perceived importance of the field. One such framework is

developed under A fast Post-Training Pruning Framework for Transformers [3] which

eliminates the need for retraining, aiming to reduce model size and inference latency. The

framework operates by taking a pre-trained Transformer model, a sample dataset and a

FLOPs/latency constraint as input (Figure 1) and outputs a pruned model that meets the

specified resource constraints. By employing a three-stage decomposition process involving a

Fisher-based mask search algorithm, mask rearrangement and mask tuning, the framework

identifies and prunes redundant components while preserving model accuracy. This retraining-

free approach enables quick and efficient model compression, leading to significant reductions

in FLOPs and inference latency, without compromising performance, making it a practical

solution for optimising Transformer models.

Figure 1. Conventional pruning framework VS Proposed pruning framework [3]

Another work is Unified Visual Transformers Compression [4] which presents a unified

framework for compressing Vision Transformers, combining pruning, layer skipping, and

knowledge distillation (Figure 2) techniques to optimise model performance under

computational constraints. Pruning selectively removes redundant weights, layer skipping

adjusts computation patterns across blocks, and knowledge distillation transfers essential

information from a larger model to a compressed one. By jointly optimising model weights,

pruning ratios, and skip configurations under specific constraints, Unified Visual Transformers

Compression achieves efficient model compression while maintaining performance on vision

tasks.

Figure 2. The compression scheme of [4].

An interesting study on extreme model reduction is XTC [5] which focuses on ultra-low bit

precision quantization to compress large pre-trained transformer models for efficient

deployment on resource-constrained devices. By combining lightweight layer reduction

methods, 1-bit quantization with deep knowledge distillation and data augmentation, longer

training budgets, and careful hyperparameter tuning, XTC achieves state-of-the-art results in

extreme compression, surpassing previous methods in both compression ratio and model

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 18

performance. The study systematically evaluates the impact of key hyperparameters and

training strategies on extreme compression, highlighting the importance of simplicity and

efficiency in the compression pipeline. Overall, the paper presents a simple yet effective

method for extreme compression of pre-trained transformers, demonstrating superior

performance and compression rates compared to existing approaches where size reduction

matters the most.

Another work is MiniVIT [6] that introduces a novel compression framework for Vision

Transformers. MiniViT combines weight sharing, transformation, and distillation techniques

(Figure 3) to reduce the number of parameters in Vision Transformer models while maintaining

or even improving performance compared to the original models. By multiplexing weights of

consecutive transformer blocks and applying weight distillation over self-attention, MiniViT

effectively reduces model size without significant loss in accuracy. The framework

demonstrates its efficacy through experiments showing substantial parameter reduction in pre-

trained models like Swin-B and DeiT-B, with performance improvements on tasks such as

ImageNet classification.

Figure 3. The compression scheme of MiniViT [6]

Lastly, Compressing Large-Scale Transformer-Based Models: A Case Study on BERT [7],

focuses on compressing large-scale Transformer-based models, specifically BERT, to make

them more suitable for low-capability devices and applications with strict latency requirements.

By exploring various compression techniques such as quantization, pruning, and knowledge

distillation, the document aims to help researchers and practitioners create lightweight yet

accurate models for Natural Language Processing tasks. The insights provided clarify how

these compression methods impact model size, performance, and efficiency, offering valuable

guidance for optimising Transformer models for real-world applications.

2.2.1 The Once-for-All Concept and its Variants

The Once-for-All (OFA) network training technique introduces a novel approach to deploy

neural networks across various devices with different resource constraints efficiently. Unlike

traditional methods that require training specialised networks for each scenario, OFA

decouples the training and sub-network search processes, enabling the quick selection of

specialised sub-networks without additional training (Figure 4). This innovative methodology

not only improves accuracy and efficiency on a wide variety of devices but also reduces

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 19

computational costs and CO2 emissions significantly. By leveraging the OFA training scheme,

users can achieve high performance while minimising the time and resources needed for

model optimization and deployment.

Figure 4. Train the network once and extract the appropriate sub-network for each different
hardware setup.

Initially, the idea of OFA [1] was conceived for Convolutional Neural Networks. The process,

in its core, is highly non-trivial since it requires the joint optimization of weights belonging to

potentially different sub-networks, in such a structured way to maintain the accuracy of all of

them simultaneously. It is computationally prohibitive to enumerate all sub-networks to get the

exact gradient in each update step, while randomly sampling a few sub-networks in each step

can lead to significant error drops. The challenge is that the different sub-networks are

implicitly interfering with each other, making the training process and convergence of the

whole once-for-all network complicated, at the very least.

The main idea of OFA in CNNs is the progressive shrinking algorithm (Figure 5). Progressive

shrinking works by enforcing training orders from large sub-networks to small sub-networks in

a progressive manner within the Once-for-All (OFA) network. This training scheme aims to

prevent interference between sub-networks by starting with training the largest neural network

with maximum dimensions (e.g., kernel size, depth, width) and then progressively fine-tuning

the network to support smaller sub-networks that share weights with the larger ones. By

following this approach, progressive shrinking provides better weight initialization by selecting

crucial weights from larger sub-networks and allows for the distillation of smaller sub-networks,

thereby enhancing the training efficiency of the OFA network.

Figure 5. Illustration of the progressive shrinking process for CCNs to support different depth
D, width, W, kernel size K and resolution R.

After training the Once-for-All (OFA) network, the process of selecting a specific sub-network

for a particular hardware device involves utilising a predictor-guided architecture search. This

search method leverages accuracy and latency predictors trained on a subset of sub-networks

to guide the selection of an architecture that meets the requirements of the target hardware

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 20

device. By using the predictors to estimate the performance of different sub-networks in terms

of accuracy and latency, the architecture search can efficiently identify the most suitable sub-

network that balances accuracy and computational efficiency for the given hardware

constraints. This approach enables the OFA network to be specialised in diverse hardware

devices by selecting the optimal sub-network that best aligns with the device's capabilities and

operational needs. Bringing this concept closer to VOXReality needs, essentially equates to

decomposing and adapting the aforementioned processes to transformers.

A work that explores similar mechanisms for transformers is DynaBERT [8] which adapts to

diverse architectural configurations by dynamically adjusting depth (network layers) and width

(the dimensionality of the hidden layers) dimensions. Initially, it trains a width-adaptive BERT

model able to flexibly adjust its width to suit specific tasks and hardware limitations.

Subsequently, DynaBERT extends this adaptability to encompass both width and depth

dimensions, allowing for fine-grained optimization of model size and latency. Through

sophisticated techniques such as knowledge distillation and network rewiring, DynaBERT

distills crucial insights from the full-sized model into smaller sub-networks while preserving

essential features. The scheme empowers superior performance across various efficiency

constraints, positioning it as a versatile and potent solution for deploying efficient language

models in real-world applications. Figure 6 shows us the two-stage procedure to train with

DynaBERT. First, it uses knowledge distillation to transfer knowledge from a frozen teacher

network to a student sub-network with adaptive width (DynaBERT𝑤). Then, using knowledge

distillation it transfers knowledge from DynaBERT𝑤 to multiple student sub-networks with

adaptive both width and depth (DynaBERT).

Figure 6. The two-stage procedure to train with DynaBert2.

A different work is Prune Once For All [9] (Figure 7). By leveraging weight pruning and model

distillation techniques, the Prune OFA method inherently creates sparse pre-trained models

with specific sparsity patterns. These sparse models can be considered as sub-networks of

the original dense model, where certain connections or parameters have been pruned based

on the defined sparsity ratio. These sub-networks retain the essential information required for

efficient processing and can be utilised for inference tasks, reducing computational costs and

memory requirements while maintaining high performance. The ability to extract sub-networks

from the Prune OFA method adds flexibility and scalability to the deployment of sparse pre-

trained language models in various applications.

2 Knowledge distillation is used to transfer knowledge from the frozen teacher network (left) to a student
sub-network with adaptive width (middle). Then, knowledge distillation is used again to transfer
knowledge to multiple student sub-networks with adaptive both width and depth (right).

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 21

Figure 7. The Prune OFA training scheme.

Finally, the work we initially considered to have the greatest potential for use in VOXReality is

Autoformer [10], since it showcases the largest number of changeable/tunable parameters

and is shown to work for vision transformers (ViT). The key changeable parameters in

AutoFormer include depth, K-Q-V dimensions, embedding dimension, attention’s number of

heads and Multilayer Perceptron (MLP) ratio which significantly impact model performance

(Figure 8). By allowing all these parameters to be adjusted during training, AutoFormer

enables the exploration of vastly diverse transformer structures, adapted to specific

requirements.

Figure 8. Detailed transformer block in an AutoFormer structure with all changeable
parameters3.

The training procedure of AutoFormer involves creating a super-network with adjustable

changeable dimensions (Figure 9) and for each epoch selecting a subset of this network for

training. During training, only the weights specific to the chosen subset are updated while the

remaining weights stay constant, a practice defined as “weight entanglement” (Figure 10).

This process is repeated for each epoch until training is complete. By following this iterative

approach, the sub-networks within the super-network are effectively trained, enabling efficient

weight inheritance and the development of high-performance transformer models.

3 Depth, K-Q-V dimensions, embedding dimension, attention’s number of heads and Multilayer
Perceptron (MLP) ratio

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 22

Figure 9. The values of the changeable dimensions. Tuples of three values in parentheses
represent the lowest value, the highest value, and step of each tunable parameter.

Figure 10. Classical weight sharing (left) vs. Weight entanglement of AutoFormer (right).

After training the super-network, an evolutionary search process is employed to select a

specific sub-network with the desired number of parameters. This involves evaluating the

performance of different sub-network architectures within the trained super-network and

choosing the model that achieves the highest accuracy while meeting the specified

parameters constraints. By conducting evolutionary optimization utilizing typical selection,

crossover and mutation operations, the search algorithm iteratively refines the selection of

sub-networks based on their performance and parameter sizes. Through this iterative process,

a sub-network emerges that meets the desired balance of parameter count and accuracy,

ensuring an effective trade-off between model complexity and performance.

2.3 The VOXReality Model Optimization Approach

2.3.1 Aiming and Background

The aim of this endeavor was to provide a framework for the optimization of various

VOXReality models, guided by the project DoA which drafts an approach based on the Once-

For-All (OFA) concept. Decomposing OFA into its basic elements, it is essentially about

training generically one very large network which is not intended for inference, and then for

the actual deployment being able to fine-tune and extract a working sub-network adapted to

the nuances of the target platform and application.

The original Once-For-All concept which is designed for Convolutional Networks (CNNs) and

its more recent derivatives like the Autoformer, rely on diminishing various intermediate model

matrices while preserving most of their contribution to accuracy, constrained additionally by

other arbitrary requirements like the model’s target memory consumption, inference speed on

a specific HW, etc. Both these techniques operate partially in training, meaning that the subject

models must be designed from scratch with provisions for the support of this schema. These

induced design choices, on top of the implicit added human effort, render the conduction of

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 23

the large model’s generic training very resource-demanding, inefficient, and is deemed

reasonable only for models whose extracted sub-models will see broad and intensive use. For

all these reasons, we chose to put our efforts on developing solely for the post-training

optimization case, enabling us to provide a truly universal method of network compression

that is able with minimal provisions to support the treatment of all VOXReality models and

more.

In order to provide a truly post-training optimization procedure, while adhering to the core OFA

principles of representing the initial large trained model “once” and then combine parts of it,

creating sub-models that perform well for various model sizes (corresponding to the capacity

of the targeted deployment platform), we chose to build on the fundamental linear-algebra

concept of matrix decomposition. There are various ways to decompose a matrix, and we

experimented heavily with two of them: based on i) the Kronecker Product4 and ii) Singular

Value Decomposition (SVD)5.

Initially, we invested on the Kronecker Product decomposition because of an observation we

made that for the same number of parameters, the Kronecker representation allows for twice

the rank 6 (independent components) of the product matrix, retaining essentially a more

expressive embedding space. After long experimentation with our prototype, we concluded

that, unfortunately, rank does not correlate well with model accuracy, rendering this form of

representation unsuitable for our purposes. So, we resorted to our next option for matrix

decomposition, which was SVD. Overall, we created a multi-step process which aims to

reconstruct and save an initial model with fewer parameters, subjected to an acceptable drop

in accuracy. Another crucial facet of our devised scheme in our effort to borrow elements from

the OFA concept, is to create any necessary intermediate data representations or conduct

any lengthy operations only once and afterwards use / combine the produced elements on

demand to create sub-models adapted to the intended deployment platform.

2.3.2 Matrix Decomposition

Decomposition, as a neural network compression technique, centers on the idea of breaking

down large, redundant weight matrices or tensors within a trained model into a set of smaller,

more efficient components. The core principle leverages the observation that these large

parameter structures often contain significant redundancy, meaning their information content

can be accurately represented by a lower-dimensional approximation. Techniques like

Singular Value Decomposition (SVD) for matrices or various tensor decompositions (e.g.,

Tucker, CP and Kronecker decomposition) for higher-order tensors are applied to individual

layers (e.g., convolutional or fully connected layers). Instead of storing and computing with the

original large weight matrix, the model is reconfigured to use these smaller decomposed

factors. For instance, a single large matrix W might be replaced by the product of two much

smaller matrices, A and B, where W = AB. This replacement significantly reduces the total

number of parameters and the computational operations (FLOPs) required during inference,

making the model lighter and faster for deployment on resource-constrained devices.

Singular Value Decomposition (SVD) is a fundamental technique in linear algebra that

involves breaking down any matrix 𝐴 into three simpler ones: 𝐴 = 𝑈𝛴𝑉𝑇 (Figure 11). Imagine

it like taking a complex dish and separating it into its core ingredients. Here, 𝑈 and 𝑉𝑇 are

orthogonal matrices whose columns (or rows for 𝑉𝑇) represent fundamental "patterns" within

the data. The crucial part is 𝛴 , a diagonal matrix filled with singular values, which are

essentially numerical "weights" indicating how important each corresponding pattern from 𝑈

4 https://mathworld.wolfram.com/KroneckerProduct.html
5 https://mathworld.wolfram.com/SingularValueDecomposition.html
6 https://mathworld.wolfram.com/MatrixRank.html

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 24

and 𝑉𝑇 is. Larger singular values mean more significant patterns, while smaller ones often

represent noise or less vital information. This concept is core to many data compression

techniques across various fields. Since the singular values are ordered by their significance,

we can create a low-rank approximation of a large weight matrix. Instead of using the entire

original matrix, we keep only the top k most important singular values and their associated

vectors. This effectively replaces one big matrix with the product of two much smaller ones

(e.g., ≈ 𝑈𝑘𝛴𝑘𝑉𝑘
𝑇). This substitution dramatically reduces the number of parameters and

computational operations needed during inference, making the model much smaller and faster

to run on devices with limited resources, all while typically maintaining most of its original

accuracy. For a given weight matrix 𝑊 ∈ 𝑅𝑀𝑥𝑁 of the model, SVD decomposes it into 𝑈𝛴𝑉𝑇.

When we perform a low-rank approximation by keeping only the top 𝑘 singular values, the

original matrix W is effectively replaced by the product of three smaller matrices: 𝑈𝑘 ∈ 𝑅𝑀𝑥𝑘,

𝛴𝑘 ∈ 𝑅𝑘𝑥𝑘 , and 𝑉𝑘
𝑇 ∈ 𝑅𝑘𝑥𝑁 . The original number of parameters in 𝑊 is 𝑀 × 𝑁 . After

decomposition, the number of parameters becomes 𝑀 × 𝑘 + 𝑘 + 𝐾 × 𝑁 (for 𝑈𝑘, 𝛴𝑘 diagonal,

and 𝑉𝑘
𝑇, respectively), which simplifies to approximately 𝐾(𝑀 + 𝑁) when 𝑘 is small and the

diagonal 𝛴𝑘 is ignored or absorbed into one of the other matrices. For the decomposition to

result in effective compression (a reduction in parameters), the new number of parameters

must be less than the original: 𝐾(𝑀 + 𝑁) < 𝑀𝑁 => 𝐾 < 𝑀𝑁/(𝑀 + 𝑁). This implies that k

must be sufficiently small relative to 𝑀 and 𝑁.

Figure 11. The Singular Value Decomposition (SVD) basic principle.

In Transformer models, such as the Vision-Language (VL) and Large Language Models (LLM)

we are developing in VOXReality, SVD is primarily effective for compressing the extensive

weight matrices found within the attention mechanisms and Feed-Forward Networks (FFNs)

of each encoder and decoder layer. These include the Query, Key, and Value matrices, the

attention output matrix, and the MLP layers within the FFNs. Those specific matrices are often

massive and exhibit significant redundancy, making them ideal targets for SVD, which can

effectively reduce their parameters and computational demands by replacing them with

smaller, factorized approximations; thereby making the model lighter and faster for

deployment. Having said that, SVD is not guaranteed to be universally applicable to all

matrices potentially found in an architecture. Certain layers may be extremely sensitive to

changes and are considered notoriously difficult to approximate, deeming them practically

incompressible. This primarily includes the embedding layers and the final output layers (e.g.,

classification or language modeling heads). Embedding layers are crucial as they encode the

fundamental semantic meaning of each token; aggressive SVD compression in these layers

can severely degrade the model's basic understanding. Similarly, the final output layers

directly translate the complex internal representations into the model's ultimate predictions.

Compromising these layers through aggressive compression can lead to a disproportionately

large and detrimental impact on the overall task performance, as they represent the critical

last step in the model's processing pipeline. Taking into account all the above (i.e., excluding

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 25

incompressible matrices), we investigated various VOXReality models to estimate their

theoretical maximum Reduction Rate. The results of this analysis can be seen in Table 1.

Table 1. The theoretical maximum Reduction Rate of various VOXReality models.

Model Theoretical Maximum Model

Reduction (Reduction Rate)

src_ctx_and_term_nllb_600M 10% (0.1)

src_ctx_and_term_nllb_1.3B 21% (0.21)

nlb_asr_synthetic_robust 11% (0.11)

navqa 78% (0.78)

t5_nlu_intent_recognition 12% (0.12)

whisper_small_el_finetune 29% (0.29)

As it is revealed, the BLIP-VQA-based NaVQA model stands out as the most compressible

architecture, and thus we chose to utilize it as our “test mule” for our further concept

developments. On the other hand, models with apparently low compressibility, like the

“voxreality/src_ctx_and_term_nllb_600M”, face a unique challenge. This specific model

contains embedding layers and a final output projection of very large dimensionality (256206

× 1024), each holding over 262 million parameters. The keeping of these layers is crucial.

Embedding layers convert words into the numerical data the model understands, capturing

their basic meaning, while the final output-layer translates the model's processing back into

language, producing the prediction. Because these specific layers are so fundamental to the

model's core understanding and its ability to give accurate answers, they are highly resistant

to compression without significant loss in performance. This is the main reason why models

like this have a low theoretical maximum reduction rate. So, like it was mentioned before, we

are using the NaVQA model for further experimentation.

NaVQA is a fine-tuned BLIP-VQA architecture that integrates components for both vision and

language processing. Specifically, its structure includes a vision encoder, a text encoder, and

a text decoder. Stemming from the aforementioned compressibility analysis, we targeted and

reconstructed the weight matrices comprising the attention and cross-attention mechanisms

(i.e., the K, Q, V, and all MLP weight matrices) of the underlying architecture. We performed

a low-rank SVD approximation, where the original matrix W was replaced by the product of

three smaller matrices (U,Σ,V). In this naive implementation of SVD, we uniformly set the rank

k of the decompositions for all compressible matrices to be the same, based on the targeted

Reduction Rate of the output model (i.e., setting “k” such as the output model to exhibit the

targeted reduction in parameters). Based on the previous discussion, understandably, this

strategy may be not only sub-optimal but even worse, catastrophic to many network instances,

due to the varying sensitivity to changes of the different layers and matrices in the model.

Some layers carry less essential information and can be significantly compressed without

much impact on the model's performance. On the other hand, other layers, even those

structurally similar, may hold crucial features and thus even slight compression can cause a

much larger drop in accuracy. This fundamental insight underscores that a uniform

compression approach across the entire model is unlikely to be optimal, necessitating a more

nuanced strategy to identify the most robust and effectively compressible sections of each

specific model instance.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 26

To test this notion, we conducted a systematic exploration (based on exhaustive search) to

investigate whether specific layer combinations yield better accuracy (BLEU scores for

NavQA). This involved iterating through various configurations, defined by combinations of

model components and contiguous ranges of Transformer layers (from 1 to 12, with a

minimum span of 5 layers). For every specific combination of model components and layer

ranges we explored, we designated all the identified compressible weight matrices for SVD.

This included the attention mechanism's Query, Key, Value, and projection weights, as well

as the dense layers found in the Feed-Forward Networks, but strictly only within the selected

sections and layer indices. This comprehensive combinatorial search allowed us to identify

specific subsets of layers for SVD application and then evaluate their impact on model

performance. This strategic compression methodology, which we term “Adaptive SVD”,

involves selectively applying Singular Value Decomposition to specific subsets of a model's

compressible layers. This adaptive approach aims to identify the optimal layer configurations

for SVD, balancing overall model reduction with the critical preservation of performance. As

seen in Table 2, our adaptive SVD approach yields significantly higher BLEU scores than the

naive uniform implementation, especially as we push for greater model reduction. Additionally,

based on insight gained through the conduction of such an extensive search of the underlying

model configuration space, we can safely conclude that compressibility differs significantly

between different components and depths across the model architecture.

Earlier in this chapter, we also mentioned the existence of another type of potentially useful

decomposition representation, based on operations of the Kronecker product. Unlike SVD,

which factorizes a matrix into singular vectors and values, Kronecker decomposition

approximates a large matrix as a Kronecker product of two or more smaller matrices. This

method is particularly effective for certain types of structured matrices (i.e., 3D and 4D

matrices) and can theoretically offer significant parameter reduction by replacing a single large

matrix with a composite of much smaller ones. Putting it to the test, we conducted a similar

study using this compression scheme (in the same adaptive manner), reaching to the bitter

conclusion that its characteristics, at least for the type of model we experimented with, lead to

an inferior than SVD’s model size – evaluation accuracy profile, deeming it unsuitable for our

causes, as presented in Figure 12.

Table 2. Evaluation accuracy (BLEU) of Uniform and Adaptive SVD.

Model Reduction

(Reduction Rate)

Uniform SVD (BLEU) Adaptive SVD (BLEU)

Original model 91.3

10% (0.1) 83.5 89.4

20% (0.2) 71.4 81.7

30% (0.3) 43.2 70.8

40% (0.4) 26.5 61.8

50% (0.5) 15.0 48.1

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 27

Figure 12. NaVQA evaluation accuracy for adaptive SVD and Kronecker decompositions
across different Reduction Rates.

2.3.3 SVD Synthesis

First step in our process is the calculation of the two SVD factors of all model matrices, for

each one up to the rank which yields a smaller number of parameters than the initial matrix.

We call this meaningful max rank “m”. Since our aim is compression, there is no meaning in

reconstructing the matrices with equal or more parameters than their original form. If this is

the case, we should better utilize the matrices as they are, avoiding any reconstruction loss.

Compression is essentially achieved by potentially replacing each model matrix with its two

SVD factors UM (implying the simplified SVD notation where M = ΣVT) of low rank “k”, such

as the whole model achieves the targeted Reduction Rate. For each individual matrix Ai of

dimensions Ni × Di of the initial model, the aforementioned replacement can be formally

expressed as:

This essentially uniformly maps low-rank factors to RR values, with RR values close to 0

yielding the original matrix.

Next stage of our pipeline is the selection of the individual Reduction Rate of each matrix “RRi”

so as they all together conform with the targeted RR of the model. This is a very tricky decision

to take, as we discussed extensively in the previous chapters, since not all model matrices

are equally compressible, sensitive to changes or have the same contribution to the output

model’s evaluation accuracy. Worse than that, trained models of even the same base-

architecture, appear to behave differently. In the previous chapter, we referred to an early,

exhaustive search-based approach (i.e., Adaptive SVD) dealing with the need to search for

the individual matrices’ compression parameters required to consistently achieve a favorable

size reduction-evaluation accuracy trade-off. Having set that, one can confidently claim that

the decomposition-parameters versus evaluation-accuracy landscape is very complex, highly

nonlinear and we have no clue on how to calculate derivatives on it, making it a suitable

candidate for the conduction of Derivative-Free Optimization (DFO) [11].

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 28

DFO is a family of mathematical optimization techniques which do not require derivative

calculations on the implicit loss / energy function they optimize, operating exclusively in a

Black-Box manner. At their initialization, the only arguments required are: i) the problem

variables, ii) the mathematically formulated constraints, iii) a “budget”, meaning how many

steps or how much time they can spend in their search, and iv) whether to maximize or

minimize the implicit function. They operate in an open-loop manner, requiring feedback at

every iteration. At each step, the optimizer proposes a set of values for the problem variables

which do not lead to constraints violations. Then, these proposed values are applied to the

system and an evaluation phase follows where their effect on the system’s performance is

measured. To conclude the iteration, the system returns to the optimizer the value of its latest

evaluation. Considering this, the optimizer proposes a new set of values to be tested in the

next iteration, until the whole budget has been depleted. The evaluation function, dataset, and

metric, of course, can vary between use-cases and needs to be defined and implemented for

the model(s) one cares about. In our current implementation, we include in our tool code and

data that support the optimization and decomposition of our NaVQA model, as a means of

demonstration.

A powerful aspect of our concept is the conduction of the aforementioned optimization,

automating the selection of these otherwise very fragile and crucial decomposition

parameters. The external Python library we relied on for the efficient conduction of DFO is

Facebook Research’s Nevergrad7. Bridging our concept to DFO, we consider our problem

variables to be the individual Reduction Rates “RRi” of all model matrices in [0,1) so that the

whole model’s RR to be at least equal with the targeted RR. For the NaVQA case, we set our

optimizer to maximize the model’s generated navigation directions’ BLEU score. Once the

optimization is finished, we synthesize and export our output model using the best yielded

matrices configuration for our targeted Reduction Rate. On top of that we can always apply

weights-quantization to further reduce the subject model size. In Table 3, four distinct

compression profiles for NaVQA of varying size and accuracy (using a combination of SVD

Synthesis and Weights Quantization) can be seen.

Table 3. Different compression profiles for NaVQA.

Preset Reduction Rate Quantization Size BLEU

Original - - 1.54 GB 91.3

Good 0.1 - 1.39 GB 88.3

Light 0.2 FP16 0.61 GB 80.5

Tiny 0.4 FP16 0.46 GB 60.2

We should note here that in order for our exported models to be used in Python applications,

they need to be loaded in a different way, using a module we are providing. A snipped of such

a tweaked model loading can be seen in Figure 13.

Figure 13. Loading an SVD Synthesized model in Python.

7 https://facebookresearch.github.io/nevergrad/getting_started.html

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 29

2.3.4 Future Work

Recent works, namely ASVD [12], SVD-LLM [13] and SVD-LLM V2 [14] attempt to improve

naïve SVD with promising results. ASVD is a post-training singular value decomposition

method that compresses large language models by transforming weight matrices based on

activation distributions and optimizing layer-specific decomposition based on sensitivity. SVD-

LLM appears to offer slightly better results by incorporating a truncation-aware data whitening

technique and adopting parameter updates with sequential low-rank approximation to mitigate

accuracy degradation. SVD-LLM V2 optimizes this pipeline further by assigning unique

compression ratios to each weight matrix based on a calculation of the theoretical truncation

loss.

Our vision is to develop an advanced compression-rate selection algorithm extending the

SVD-LLM2 approach by grouping the model weight matrices not only by their type, but also

by layer or a combination of those. We also plan to explore the utilization of Fisher information

FW-SVD [15] into our envisioned SVD-LLM2 modified architecture, instead of plain SVD,

potentially improving performance further. The full range of options to be investigated for

further development include several SVD-based techniques (SVD, FWSVD, ASVD, SVD-

LLM, SVD-LLM-v2) applied on BERT and DeBERTa models using the GLUE and Squad

datasets. As long as a viable research-path has been identified, we will apply our findings to

the VOXReality models, furthering the advancement of our offered ecosystem, and in parallel

prepare the release of a new journal paper.

2.4 VOXReality models ONNX repository

As mentioned earlier, we have developed a command-line interface tool (CLI) able to quantize

and export various VOXReality models into the common cross-platform ONNX model format.

Our tool’s source code can be found in the project’s GitLab repository8. Using the tool, we pre-

exported to ONNX format the majority of the VOXReality models, and uploaded them for

convenience, ready to be used, in the project’s HuggingFace repository 9 (Figure 14).

Additionally, in Table 4 we also provide indicative performance measurements for all the

provided embodiments of our models, on various devices.

Table 4. VOXReality models and their inference-time (ms) across various file formats, weight-
quantization schemes and host device-types.

Configuration
Model

FP32-
CPU

FP32-
GPU

FP16-
GPU

ONNX-FP32-
CPU

ONNX-FP32-
GPU

ONNX-FP16-
GPU

rgb_language_cap 4217 ms 1591 ms 578 ms 4007 ms 1693 ms 498 ms

rgb_language_vqa 525 ms 73 ms 56 ms 318 ms 128 ms 48 ms

src_ctx_and_term_nllb_600M 532 ms 98 ms 65 ms 525 ms 206 ms 110 ms

src_ctx_aware_nllb_600M 514 ms 327 ms 66 ms 517 ms 125 ms 57 ms

whisper-small-el-finetune 1636 ms 182 ms 156 ms 1310 ms 657 ms 168 ms

whisper-small-el-adapters 1767 ms 817 ms 175 ms 1291 ms 436 ms 223 ms

vit-gpt2-image-captioning 609 ms 100 ms 77 ms 478 ms 124 ms 72 ms

8 https://gitlab.com/horizon-europe-voxreality/model-training-and-inference-optimization/post-training-
optimization-tool
9 https://huggingface.co/voxreality

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 30

src_ctx_aware_nllb_1.3B 1073 ms 386 ms 145 ms 1036 ms 202 ms 91 ms

t5_nlu_intent_recognition 179 ms 59 ms 52 ms 135 ms 55 ms 42 ms

nllb-asr-synthetic-robust 539 ms 105 ms 66 ms 506 ms 95 ms 51 ms

navqa 2335 ms 939 ms 397 ms 485 ms 109 ms 85 ms

Figure 14. The VOXReality HuggingFace repository.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 31

3 Model Deployment and Sharing

AI model deployment and sharing play a crucial role in ensuring that high-quality, robust ML

and AI innovations are effectively translated into practical, real-world applications. First,

deploying AI models on a development server is a critical phase to rigorously validate and test

the various services. Moreover, the deployment processes involve the integration of these

models into existing systems and workflows, enabling seamless operation in different

environments under different conditions. On the other hand, model sharing refers to the

processes of distributing the model itself, facilitating its wider use and development by others.

VOXReality utilized NLP and CV advancements to develop robust AI models, aiming to

address the challenges of human-to-human and human-to-machine interaction in XR

environments. Detailed information on the development of VOXReality AI models can be

found in D3.1 “Advanced AI multi-modal for XR analysis V1” [16]. The VOXReality trained AI

models and the developed AI tools are automatically deployed in development server for

further validation and testing from the consortium members. The deployment procedure was

automated through GitLab’s CI/CD pipeline, which had been configured by VOXReality to

enable the automation of integration and deployment procedures. The pipeline utilized GitLab

CI/CD platform's runners to execute these operations efficiently. A detailed description of

VOXReality CI/CD pipelines is provided in D2.3 “Development Infrastructure and Integration

Guidelines” [17].

Moreover, the trained models were already deployed across three distinct use cases: Virtual

Reality Conference, Augmented Reality Theatre and Training Assistant. A detailed description

of the VOXReality application's implementation for each use case is provided in Section 4.

Beyond these initial applications, the models can also be utilized by external application

developers for a variety of tasks. To facilitate this adaptability, comprehensive deployment

guidelines were provided outlining various deployment options. Additionally, all developed

VOXReality AI models were made publicly available for sharing on the Hugging Face platform.

It is important to highlight that all research outputs of the project are publicly available,

supporting the commitment of VOXReality to open science. This ensures that stakeholders

can access and utilize these outputs. Specifically, the research outputs of the VOXReality

project can be accessed through various repositories, which are listed here:

1.

VOXReality GitLab, containing inference code and AI tools.
https://gitlab.com/groups/horizon-europe-voxreality

2.

VOXReality DockerHub, hosting docker images that encapsulate the operating
environment, the AI models and the code required to utilize the model effectively.
https://hub.docker.com/u/voxreality

3.

VOXReality HuggingFace, listing various VOXReality AI models available for
use.
https://huggingface.co/voxreality

These research outputs can be used in various combinations by end users to leverage the

VOXReality assets in their applications:

1. Using GitLab Source Code to Create RESTful Services. Users can employ the

source code from VOXReality GitLab. It is recommended to create a Conda

environment including the requirements of each service. The VOXReality pretrained

models are obtained from Hugging Face. The source code from VOXReality is

designed to employ RESTful architecture, enabling the creation of services that

https://gitlab.com/groups/horizon-europe-voxreality
https://hub.docker.com/u/voxreality
https://huggingface.co/voxreality

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 32

expose one or more endpoints. These endpoints facilitate efficient interaction with the

service, following standard communication practices between computer systems. In

VOXReality, FastAPI is used for building APIs with python.

2. Direct Use of Docker Images. Users can directly use the Docker image from

VOXReality Docker Hub or Docker Compose from VOXReality GitLab. The images

include the operating environment and the corresponding VOXReality pretrained

model, which is automatically retrieved from VOXReality Hugging Face.

3. Download Hugging Face models. Users can download and fine-tune the VOXReality

pretrained models from Hugging Face for specific tasks. Subsequently, they can use

the source code from GitLab to build services that expose one or more endpoints,

following the RESTful architecture. Alternatively, users can also build a Docker Image

using this approach.

3.1 Deployment of VOXReality AI Models in Development Server

The deployment of VOXReality in the development server was a critical part of the

development process. This stage enables the AI engineers to validate, test and refine the AI

models within controlled, real-world scenarios, providing invaluable feedback that is essential

for further enhancements. These activities can be characterized as laboratory tests and are

carried out by the consortium members, with the aim of ensuring that all the components work

together effectively. Detailed information and characteristics of VOXReality development

environment are presented in D2.3 “Development Infrastructure and Integration Guidelines”

[17].

Automatic deployment to the development server was essential of the development workflow

followed by VOXReality, facilitated by the robust CI/CD pipeline. This automated system

ensures that every code commit triggers a series of events, starting with the integration of new

software features into the module’s functionality. Code changes are committed to a dedicated

development branch in GitLab, triggering the CI/CD pipeline that executes any preconfigured

unit tests. Successful tests lead to code merging into the main branch, while failures prompt

necessary revisions. The CD phase then automated packaging and prepared the software for

deployment, resulting in Docker images that are pushed to VOXReality DockerHub and then

deployed to the development server for validation and testing. The CI/CD pipeline can be

further enhanced towards security processes by applying SAST.

GitLab CI/CD can deploy jobs to build Docker images and publish them to a container registry.

The basic steps to enable GitLab CI/CD on a VOXReality GitLab project and a sample pipeline

template are described below.

Dockerfile

The first step included the creation of the Docker file in the root of the repository. An example

of Dockerfile is presented in Figure 15.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 33

FROM tiangolo/uvicorn-gunicorn-fastapi:python3.9

RUN apt-get update && \

 apt-get -y install sudo

RUN sudo apt install nano

COPY ./app/requirements.txt /app/requirements.txt

RUN pip install -r requirements.txt

COPY ./app/main.py /app/main.py

COPY ./app/openapi.json /app/openapi.json

COPY ./app/model /app/model

CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"]

Figure 15. Example of Dockerfile.

GitLab CI/CD Pipeline

The CI/CD pipeline was defined by the .gitlab-ci.yam configuration file, which specifies

the stages and jobs that make up the CI/CD pipeline. The file was also created in the root of

the repository. The GitLab Static Application Security Testing (SAST) can be enabled by

navigating to Secure > Security Configuration, to analyse our source code for known

vulnerabilities.

In addition to the predefined Group Variables (DOCKER_USER, DOCKER_PASSWORD,

etc), the DOCKER_IMAGE repository variable was specified by navigating to Settings >

CI/CD > Variables in the repository. A new variable could be added as it is depicted in Figure

16. All the repository variables are visualized in Figure 17.

Figure 16. GitLab CI/CD Add variable.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 34

Figure 17. GitLab CI/CD Repository Variables.

Template .gitlab-ci.yaml file

In the provided .gitlab-ci.yml template file (

Figure 18), the only necessary modification was to adjust the final command in the deploy

stage to suit the specific application-model. This last command was responsible for running

the application as a Docker container:

docker run -d -p 8080:80 –name $CI_PROJECT_NAME $DOCKER_IMAGE:$CI_COMMIT_TAG

The container name was the variable $CI_PROJECT_NAME, which was the project’s name

as shown in the URL.
stages:

- build

- test

- deploy

include:

- template: Security/SAST.gitlab-ci.yml

build:

 services:

 - docker:dind

 stage: build

 before_script:

 - echo "$DOCKER_PASSWORD" | docker login --username "$DOCKER_USER" --password-stdin

 script:

 - |

 if [["$CI_COMMIT_BRANCH" == "$CI_DEFAULT_BRANCH"]]; then

 tag=""

 echo "Running on default branch '$CI_DEFAULT_BRANCH': tag = 'latest'"

 else

 tag=":$CI_COMMIT_REF_SLUG"

 echo "Running on branch '$CI_COMMIT_BRANCH': tag = $tag"

 fi

 - docker build --pull -t "$DOCKER_IMAGE${tag}" .

 - docker push "$DOCKER_IMAGE${tag}"

 rules:

 - if: "$CI_COMMIT_BRANCH"

 exists:

 - Dockerfile

build-tags:

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 35

 stage: build

 before_script:

 - echo "$DOCKER_PASSWORD" | docker login --username "$DOCKER_USER" --password-stdin

 script:

 - docker build --pull -t "$DOCKER_IMAGE:$CI_COMMIT_TAG" -t "$DOCKER_IMAGE:latest"

 .

 - docker push "$DOCKER_IMAGE:$CI_COMMIT_TAG"

 - docker push "$DOCKER_IMAGE:latest"

 only:

 - tags

sast:

 stage: test

unit-test:

 image: alpine:3.18.0

 stage: test

 script:

 - echo "Running unit tests... This will take about 10 seconds."

 - sleep 10

 - echo "Tests passed succesfully"

lint-test:

 image: alpine:3.18.0

 stage: test

 script:

 - echo "Linting code... This will take about 5 seconds."

 - sleep 5

 - echo "No lint issues found."

deploy:

 image: alpine:3.18.0

 stage: deploy

 script:

 - chmod og= $SSH_PRIVATE_KEY

 - apk update && apk add openssh-client

 - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no

$SSH_USER@$SSH_SERVER_IP "docker login -u $DOCKER_USER -p $DOCKER_PASSWORD"

 - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no

$SSH_USER@$SSH_SERVER_IP "docker pull $DOCKER_IMAGE:$CI_COMMIT_TAG"

 - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no

$SSH_USER@$SSH_SERVER_IP "docker container rm -f $CI_PROJECT_NAME || true"

 - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no

$SSH_USER@$SSH_SERVER_IP "docker run -d -p 8080:80 –name $CI_PROJECT_NAME

$DOCKER_IMAGE:$CI_COMMIT_TAG"

 only:

 - tags

Figure 18. Template of .gitlab-ci.yaml file

Trigger GitLab CI/CD

The GitLab CI/CD is triggered in the following cases:

• When pushed to main, the first two stages were triggered as shown in Figure 19. The

two phases were the build and test. The build job also pushed the $DOCKER_IMAGE to

DockeHub with a tag latest.

Figure 19. GitLab CI/CD Pipeline when push to main.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 36

• When created or pushed a tag, all stages were triggered, including build, test and deploy.

A new tag was created by navigating to code > tag > new tag, as it is illustrated in Figure

20. The build-tags job also pushed the $DOCKER_IMAGE to DockerHub with tags latest

and $CI_COMMIT_TAG, which was the commit tag name (e.g., v0.0.1). It was

recommended using only Semantic Versioning. The deploy job connected to deployment

server, pulled the docker image with the specified tag and run the docker run command to

start the container. It also removed the previous version of the container if exists. All the

triggered jobs are displayed in Figure 21.

Figure 20. GitLab CI/CD Create a new tag.

Figure 21. GitLab CI/CD Pipeline when create a new tag.

Summary of steps for automated deployment in development server

The above-described procedures for automatic deployment in VOXReality development

server can be summarized here:

1. Dockerfile Creation. A Dockerfile was created in the root of the repository to define

the environment in which the application will run.

2. CI/CD Configuration. A .gitlab-ci.yaml file was also placed in the root of the

repository. This configuration file defined how the GitLab Runner executed the CI/CD

jobs, orchestrating the build and the deployment process.

3. Security Measures (Optionally). Enabled the Static Application Security Testing

(SAST) to analyze the code for known vulnerabilities.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 37

4. Repository Variables. A repository variable named $DOCKER_IMAGE was specified

under Settings > CI/CD > Variables, which was used in the pipeline to refer to the

Docker Image.

5. CI/CD Pipeline Execution. GitLab CI/CD pipeline was triggered by either pushing to

the main branch or creating or pushing a new tag:

a. Push to main. The build and test jobs were triggered. After a successful build,

the Docker image, denoted as $DOCKER_IMAGE, is pushed to DockerHub

with the 'latest' tag.

b. Create or push a tag. When a new tag was created or pushed the build, test

and deploy jobs were triggered. This was achieved by code> tag > new tag.

The Docker image was then built and sent to DockerHub. Following this, the

corresponding container started running on the development server.

3.2 Deployment Guidelines

In the VOXReality project, a widely adopted and standardized software architectural style for

communication between computer systems was following, which was the RESTful

architecture as it is described in VOXReality Integration Guidelines of D2.3 “Development

Infrastructure and Integration Guidelines” [17]. Specifically, FastAPI10, a modern, fast web

framework for building APIs in Python, was employed. In this approach, each service exposes

one or more endpoints to which clients can send requests. These endpoints were essentially

URLs through which the services were accessible. The endpoints served as the interface for

the service, allowing clients to interact with it using HTTP methods. Therefore, the deployment

of VOXReality AI models was effectively managed through the creation of FastAPI

applications. Details about the API calls of each service are provided in Appendices of D3.1

“Advanced AI multi-model for XR Analysis” [16]. Additionally, to enhance scalability, these

applications could be containerized using Docker.

The VOXReality AI models could be deployed in various hardware environments following

different deployment methods. This section provides general guidelines that were applicable

to most of those models. However, considering the unique deployment requirements and

potential modifications for each AI model, it is advisable to also refer to the individual GitLab

pages of each model for more specific and targeted guidelines. On these individual GitLab

pages, one can find deployment instructions for all deployment methods. It should be noted

that all the following deployment methods create RESTful Services.

The deployment options that are described here include:

1. Deployment from Source Code

2. Containerization

a. Using single images from Docker Hub

b. Using Docker Compose

3.2.1 Source code-Based Deployment

All the VOXReality code, including the inference code and AI tools, is publicly available in the

GitLab group: https://gitlab.com/groups/horizon-europe-voxreality. The main thematic entities

developed in the VOXReality project are organized as subgroups within this main group.

Additionally, each subgroup may contain several projects, with each project providing a

specific service as well as detailed documentation in the form of README files. The steps to

set up and run the VOXReality models by utilizing the source code from GitLab repository are

10 https://fastapi.tiangolo.com/

https://gitlab.com/groups/horizon-europe-voxreality
https://fastapi.tiangolo.com/

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 38

described in this section. By following these steps, the VOXReality AI models are utilized, and

the local API is up and running for further development and testing, however it is important to

select the appropriate subgroup and project that meets someone’s specific requirements.

Moreover, those guidelines describe the general steps for utilizing the source code from

VOXReality GitLab repository accompanied either with the corresponding VOXReality AI

model in Hugging Face repository or with a locally stored model. The locally saved model can

be one that has been directly downloaded from VOXReality Hugging Face repository or that

has been finetuned.

1. Clone the Repository. Start by cloning the project repository from GitLab using the

command:

git clone https://gitlab.com/horizon-europe-voxreality/subgroup/project.git

2. Create a Conda Environment. If you have not already, create a new Conda

environment with Python 3.8 by running:

conda create --name env_name python=3.8

3. Activate the Environment. Activate the created Conda environment with:

conda activate env_name

4. Install Dependencies. Navigate to the project directory and install the required

dependencies using pip:

cd project

pip install -r requirements.txt

5. Navigate to Application Directory. Change into the application's directory:

cd /app

6. Configure AI Model Storage Path. Set the path where the AI model is stored by

editing the config.yaml file. This path should point out to the relevant AI model

within the VOXReality Hugging Face repository, or to a local version of the AI model

that has been either directly downloaded from Hugging Face or further fine-tuned

locally.

• To do this manually, open the config.yaml file in text editor and modify

‘PRETRAINED_MODEL_NAME_OR_PATH’ with the correct path.

• Alternative, update the config.yaml file via the terminal.

7. Launch the API Locally. Start the local server with the Uvicorn command that points

to your application.

uvicorn main:app --host 0.0.0.0 --port 8000 --reload

The above command starts the Uvicorn server hosting the application defined as “main:app”.

3.2.2 Container-Based Deployment

The VOXReality CI/CD pipeline is configured to automatically build and upload Docker images

to the VOXReality DockerHub: https://hub.docker.com/u/voxreality. These images are readily

available for end users to deploy within their applications, as well as for further development

and testing, encapsulating both the operating environments and the AI models. The currently

available VOXReality docker images are presented in Figure 22.

https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://hub.docker.com/u/voxreality

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 39

This section provides a description of two containerization strategies for deploying VOXReality

AI models, which are:

1. Using single images for VOXReality Docker Hub repo. This approach regards the

deployment of AI models using pre-built, standalone Docker images available on

Docker Hub. Each image runs as a separate container. This approach is ideal for direct

deployments where a single container can fulfil the requirements.

2. Using Docker Compose. This method is essential when the applications require a

more complex environment, involving multiple interdependent services. It allows to

define and manage the multi-container scheme with ease, offering a more integrated

deployment process. Additionally, with this method the multiple containers are

orchestrated to work together.

Figure 22. VOXReality DockerHub.

3.2.2.1 Deployment using Docker Hub Images

When deploying, the Docker images are pulled and run as containers in the target

environment. This containerization guarantees uniform operation of VOXReality AI models in

any environment, effectively abstracting away any discrepancies in underlying hardware or

software.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 40

Depending on the intended hardware, different Docker commands are used to deploy

VOXReality models, tailored specifically for CPU or GPU environments. However, it is

recommended to deploy the VOXReality AI models on GPU for optimal performance.

For deployments using a CPU, the Docker command is as follows:

docker run -p 8000:8000 <name_of_image>

For deployments intended to utilize GPU, the command is slightly modified to enable GPU

access:

docker run --gpus all -p 8000:8000 <name_of_image>

The --gpus all flag assigns all available GPUs to the container, which is necessary for

models that require or significantly benefit from GPU acceleration.

In both cases, <name_of_image> should be replaced with the actual name of the Docker

image that contains the VOXReality model to be deployed. These commands ensure that the

VOXReality models are deployed in a Docker container with the appropriate hardware access

for optimal performance.

3.2.2.2 Deployment using Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications. With

Docker Compose, a YAML file, typically named docker-compose.yml is used to configure

the application’s services, networks and volumes. This file serves as a template for Docker

to understand how to run and interconnect the various containers that make up the

application.

Figure 23 displays an example of the docker-compose.yml file that combines the NMT, the

ASR, and the conference agent.

version: "3.9"

services:

 conference_agent:

 image: voxreality/conference_agent:v1

 ports:

 - "8000:8000"

 env_file: ".env"

 volumes:

 - pdfs/:/app/pdfs:ro

 deploy:

 resources:

 reservations:

 devices:

 - driver: nvidia

 count: all

 capabilities: [gpu]

 restart: unless-stopped

 umlib:

 image: voxreality/draft_asr:v1

 ports:

 - "5033:5033"

 deploy:

 resources:

 reservations:

 devices:

 - driver: nvidia

 count: all

 capabilities: [gpu]

 restart: unless-stopped

Figure 23. Example of docker-compose.yml file

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 41

The docker-compose.yml files of VOXReality are configured to use Docker Images hosted

in the VOXReality Docker Hub repositories. Meanwhile, the various docker-compose.yml

files are maintained and can be founded in the VOXReality GitLab repo.

To run the Docker Compose in background, the following command can be used:

docker-compose up -d

To run a specific service defined in a docker-compose.yml file, the ‘docker-compose

up’ command is followed by the name of the service that it is desired to start:

docker-compose up -d [service_name]

In this case, it is important to remember that the service names used in the above command

should match exactly as it is defined in the docker-compose.yml file.

3.3 Model Sharing

Hugging Face is a central platform in the AI community for sharing AI models, particularly

those related to NLP. It provides a central hub where developers and researchers can upload

their pre-trained models, making them accessible to the wider community. The platform

supports a collaborative environment, allowing users to contribute to the development and

improvement of models in various applications. Hugging Face allows for seamless integration

of models into various projects through its comprehensive library of 'transformers'. This library

supports the download and use of these models for NLP applications as well as the fine-

tuning. Sharing AI models through this platform offers numerous benefits, including increased

visibility, community feedback and the potential for collaborative improvements. Specifically,

sharing through the Hugging Face ensures that cutting-edge models are readily available for

use and further development. This approach not only enhances the models but also

contributes to the advancement of the field.

The trained VOXReality AI models, after undergoing extensive testing and validation, are

uploaded to the VOXReality Hugging Face Community by AI Engineers. Figure 24 illustrates

the VOXReality Hugging Face repository. This dedicated repository on Hugging Face allows

researchers to easily discover and utilize VOXReality AI models, leveraging the

comprehensive documentation provided for each model to enhance their research and

applications.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 42

Figure 24. VOXReality Hugging Face repository.

Each uploaded VOXReality model is accompanied by detailed documentation that covers

various aspects such as the model’s architecture, training data, performance benchmarks,

and intended use cases. Additionally, this documentation often includes examples and

tutorials to help users better understand and utilize the models effectively. The documentation

for each model is provided in a "Model Card," which are files that accompany the models,

offering a comprehensive overview and guidance for users. Moreover, the “Model Card”

includes metadata, providing essential information such as the model’s name, version,

language, and license. The metadata acts as an informative summary, supporting easy

navigation, AI model discovery and easier use of each model. It greatly simplifies the process

for users to search for and filter models based on specific criteria like language, model type,

or application domain, ensuring a more efficient and user-friendly experience.

The following guidelines aims to provide clear instructions on how to access VOXReality AI

models form Hugging Face repository, enabling efficient integration of those models into

various applications.

1. Create a Hugging Face Account (Optional). While this is not necessary, creating an

account on the Hugging Face can provide access to additional features.

2. Select the Desired Model. In the VOXReality Hugging Face repository, select the

model that fits your need.

3. Access the model. There are 2 ways to access the pre-trained AI models in Hugging

Face VOXReality repository.

a. Using Git to download the AI model.

Since all models on the Hugging Face are Git repositories, the desired model

can be cloned locally by running:
git clone clone https://huggingface.co/voxreality/<model_name>

b. Using Transformers Library

i. Set up the Environment. If you have not done already, create a Conda

environment and install the needed libraries. This can be done, following the

next steps:

1. Create a Conda Environment. If you have not already, create a new

Conda environment with Python 3.8 by running:

conda create --name env_name python=3.8

2. Activate the Environment. Activate the created Conda environment with:

conda activate env_name

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 43

3. Install the Hugging Face “transformer” library. This can be done by

running.

4. Load the model directly. You can directly use the model in your python

script using the following command. The specific commands for each

model are generally provided by Hugging Face under the “Use in

Transformers” section:
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer= AutoTokenizer.from_pretrained("voxreality/model_name")

model=AutoModelForCausalLM.from_pretrained("voxreality/model_name”)

pip install transformers

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 44

4 VOXReality XR Applications

The pre-trained VOXReality AI models have been deployed in three different use cases:

Virtual Reality Conference, Augmented Reality Theater and Training Assistant. Table 5

presents the VOXReality components integrated into each use case.

Table 5. VOXReality components used in each use case.

Components

Use Case

Automatic
Speech

Recognition

Neural Machine
Translation

Vision
Language

Models

Dialogue
System

VR Conference X X X X

Augmented Theatres X X X

Training Assistant X X

This section details the design and implementation of the VOXReality applications, covering

both conceptual and practical aspects implemented by MΧ. Specifically, this section includes

the creation of 3D models and scenes for each XR application, as well as the workflow of the

applications. Additionally, this section discusses the necessary tools, software, and hardware

required for building these applications, along with the key algorithms and programming

techniques implemented in each solution. It also provides insights into the user interface

design. Finally, the section concludes with a brief description of how the user and technical

requirements were met, while the detailed description will be provided in deliverables of WP2

and WP5.

4.1 Virtual Reality (VR) Conference

The VR Conference application emulates the most recognisable attributes of a real-life

professional conference setting. The experience is enhanced by a real-time multilingual

translation service between users and the introduction of a dedicated, voice-driven Virtual

Agent. The Agent intends to help users during their navigation to the conference by providing

navigation instructions through the virtual space, answering to questions about the

conference’s program, giving relevant info about the booths that exist in the conference area

and by giving a description about the virtual scene. The presence of the Virtual Agent is meant

to be non-intrusive to the users, who can choose to deactivate it and reactivate it at any time.

4.1.1 System Architecture and Design

4.1.1.1 3D Models and Scenes Design

From a spatial perspective, the application was designed to simulate a real venue in a 3D

virtual world, incorporating all essential areas required for hosting a professional conference.

It was decided that five distinct rooms would be included to represent typical spaces found in

a physical conference venue. These rooms were implemented as follows:

1. The Lobby Room, serving as the entrance to the main area of the venue.

2. The Trade Shows Area, acting as the main space of the conference, where exhibitors'

booths are placed and access to all other rooms is provided.

3. The Business Room, intended for one-to-one communication between participants.

4. The Social Area, designed for many-to-many communication.

5. The Conference Room, where the main sessions are held, supporting one-to-many

communication.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 45

To improve performance and reduce loading times, each room was implemented as a

separate 3D scene. Navigation between scenes was achieved through virtual doors that

connect the individual areas.

The architectural design of each room aligns with its intended use and functional

requirements. Spaces dedicated to specific purposes were kept minimal to reduce

distractions, whereas multi-purpose areas, such as the Trade Shows Area, feature increased

dimensions and complexity. The design promotes the appropriate communication style in

each area: one-to-one interactions are encouraged through the use of tables and seating

arrangements, while one-to-many communication is supported by amphitheater-style layouts

or the presence of a stage.

All 3D models integrated into the application were created following a consistent set of

principles. Their size was minimized as much as possible by reducing geometric complexity

and lowering texture resolution, in order to control loading delays. The acceptable threshold

for this optimization process was carefully balanced against the need to maintain a realistic

visual output. To achieve this, a low-polygon aesthetic was adopted, embracing a simpler,

lightweight visual style that favors less complex geometrical forms.

4.1.1.2 Application Workflow Diagram

The core functionalities of the application presented to users can be grouped into two main

categories. The first category encompasses the communication system between the user and

their Virtual Agent, while the second outlines the pipeline supporting the real-time translation

system.

Virtual Agent Functionalities

The Virtual Agent is represented by a virtual avatar and designed as a non-intrusive entity,

meaning interaction is initiated solely by the user. Communication begins when the user

activates the agent by pressing the corresponding toggle button. Once instantiated, the Virtual

Agent greets the participant with a welcome message in their language and remains available

to assist them throughout their navigation in the VR environment. The workflow is illustrated

in Figure 25.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 46

Figure 25. Workflow for communication with the Virtual Agent.

Users can interact with the Virtual Agent using a push-to-talk mechanism that records their

voice while the Agent is active. During this time, the microphone output is isolated and not

broadcasted to other participants, ensuring a private conversation.

Once the user finishes speaking, the system formats the recorded audio into a WAV file and

sends it—along with the user's language and the target language (which is English at this

stage of the workflow)—as parameters to the Translate Audio endpoint. This service

performs both Automatic Speech Recognition (ASR) and Neural Machine Translation

(NMT).

The response of this endpoint contains both the transcription and the English translation of

the voice message. In case of an English-speaking user, both the transcription and the

translation contain the same information.

The English text is next propagated to the intent endpoint of the dialog agent that is

responsible to analyze it, retrieve its context and return relative information. This component

works as a router for the system, enabling the appropriate workflow depending on the

requested task. The user can ask the Agent about five different topics:

1. Navigation

2. Conference Program

3. Booth Details

4. Summary of the presentation

5. General

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 47

Each topic follows a different pipeline to generate the needed knowledge, whenever it is

necessary, and serve it to the dialogue agent endpoint. Depicted also in Figure 25, for all user

intentions except navigation, the human like response is generated directly by the Dialogue

Agent component. When the user requests for navigation, their query is propagated to the

NaVQA component, responsible for generating correct navigation instructions in a human like

format. Accompanied by this response, the application also generates some visual cues for

the desired destination, from a system based on the Dijkstra algorithm. The response of the

endpoint, being a human language English text, depending on the selected language of the

user, may require to be inferenced to the text translation endpoint to be transformed into the

correct language. The final text output is sent to the virtual agent and gets rendered on a text

panel.

Navigation Training Data

In order to produce the large amounts of ground-truth data needed for the training of the

NaVQA model, we devised the following deterministic mechanism, composed of various

heuristics and an implementation of the Dijkstra shortest-path finding algorithm. Having

already implemented a suitable mechanism, we chose to build upon the navigation system of

the previous version of the application that was explained comprehensively in D4.1. In

comparison to the previous implementation, a more robust and rich system has been

employed this time, generating fluent, human-like textual data describing the navigation steps

between two specified start and end points. The output steps composing the NaVQA’s training

dataset are essentially the product of a navigation route calculated as the optimal solution to

a path-finding problem and are subsequently forwarded to the proposed LLM to respond with

human-like directional instructions. The navigation model is explained in detail in VOXReality

D3.2 – “Advanced AI multi-model for XR analysis”, chapter 3.3.6.

When the application is launched, the navigation system retrieves information about the 3D

scene like its dimensions, the destination names and positions, possible anomalies of the 3D

space, connecting points etc. Once this piece of information is gathered, the application

creates a symmetrical node graph that maps the geometry of the space based on Graph

Theory and is ready to receive navigation request. The procedure of claiming the shortest path

between two points of the scene is effectively managed by employing a version of Dijkstra’s

path-finding algorithm. Dijkstra’s algorithm requires the existence of a weighted graph

mapping the environment, physical or virtual, accompanied by information regarding the

position of the start and end points. The nodes of the graph, in this proposal, are generated

heuristically, by examining if points of an orthogonal field with a predefined distance between

them, are placed inside the borders of the environment while not intersecting with other 3D

objects. Being a virtual conference, the showcased environment consists of different rooms of

the venue. Both the rooms and their objects, treated as obstacles, can be represented as

arrays of 2D vectors, assuming that the floor and ceiling levels are known. An estimation of a

point’s location relative to a polygon is provided by the parity of the number of intersections

between the corresponding point and a fixed known point outside the room. As depicted in

Figure 26, odd parity suggests that the point is enclosed by the polygon whereas even parity

implies the opposite.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 48

Figure 26. Workflow for communication with the Virtual Agent.

Adjacency between the fabricated nodes is successively resolved following the formula

below:

𝐴𝑑𝑗 = (𝑋𝑛1 == 𝑋𝑛2| | 𝑌𝑛1 == 𝑌𝑛2) && 𝐷𝑀𝑎𝑛ℎ
𝑛1→𝑛2 < 𝐷𝑓𝑖𝑒𝑙𝑑

𝑋𝑛, 𝑌𝑛: 𝑁𝑜𝑑𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

𝐷𝑀𝑎𝑛ℎ
𝑛1→𝑛2: 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠,

𝐷𝑓𝑖𝑒𝑙𝑑: 𝐹𝑖𝑒𝑙𝑑 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

This formula prohibits navigation paths from containing diagonal lines and ensures edges will
only connect nodes distant from one another. Furthermore, the weight of each edge matches
the Manhattan distance of the nodes it connects to. Additions to the nodes and graphs are
applied throughout the development of the graph, such as including nodes to represent the
destination points and edges to connect remote nodes to their nearest node. A representation
of a produced weighted graph is shown in

Figure 27.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 49

Figure 27. Weighted Graph with Manhattan Distance and Non-Diagonal Connectivity

The geometrical properties of the produced weighted graphs, such as corridors, space

openings and corners, are calculated in this respective order. An analytical algorithm

determines all straight-line paths of the graph and distinguishes those that meet a predefined

width-to-length ratio criterion. Nodes of such paths are classified as corridor members and are

excluded from further geometrical analysis. Corners of the virtual space can be defined by

identifying nodes which interfere between two consecutive corridors. All nodes that are neither

classified as corridor members nor as corner members should geometrically be part of an

opening space.

Figure 28 visualizes the workflow of handling requests for navigation from the end user, from

the application’s perspective. The position of the user inside the 3D scene is accessible by the

application, thus, once a request for navigation is recognized by the LLM, the start node is

selected to be the nearest to the actual user’s position. Consequently, the name of the

destination binds to the information about the user’s intention by the LLM module, from which

the corresponding node is extracted using a lookup table. If a valid destination point is

requested, the Dijkstra algorithm forges a sequence of nodes connecting the two points, in the

most efficient way, otherwise the application terminates the user’s request with a predefined

answer.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 50

Figure 28. Workflow of Navigation Request Handling Using LLM and Dijkstra’s Algorithm

Once a valid node path for the requested destination point is produced, the path is sliced into

line segments for further analysis. During translation of the user from the starting to the ending

point of a line segment the closest, visible object of each node is collected. For each object

the distances and the angles between the examined segment and the line that connects the

object with every node of it are calculated. The way those values progress along the path

indicates whether the user crosses an object, is moving towards it or arrives at it. This is further

explained in Figure 29.

A valid connecting path is transformed into a format valuable for the LLM. Taking into

consideration the change in direction during the user’s translation along the path, the relative

position between each consecutive path node and the objects of the environment and its

geometrical properties, an intermediate text following the format below for each line of the

path is generated:

cross [object, direction], pass through [room property], arrive [object, direction]

An example of such a generated intermediate text:

start, cross chair left, arrive wall, turn left, cross mirror, pass through wall

opening, arrive destination left, finish

As a final step, this textual information bundled together with the destination point is

propagated to the LLM module in a request to receive human-like navigating instructions. This

process took place for every node of the Tradeshow area, and for many different orientations

of the user (Body orientation, Head tilt). The resulting training dataset for the NaVQA

component consists of pairs of the human like instruction text together with the respective

image captured from the user’s point of view (PoV).

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 51

Figure 29. The way Angle and Distance change as the user arrives-to or crossing an object.
The correct detection of these two events is crucial for the creation of the navigation dataset.

Translation system (One-to-one and Many-to-many)

The real-time translation system is not managed by the virtual agent entity. In spaces that

allow communication between participants (Social Area and Business Room) translation

system is activated in stand-by mode.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 52

Figure 30. Workflow of the translation system.

The mechanism for initiating translation between users has been enhanced with a modular

and resource-efficient architecture (Figure 30) tailored to real-time communication scenarios.

When a participant activates their microphone, a WebSocket connection is first established to

the endpoint: /speaker/{speaker-user-id}. This marks the user as an active speaker and

makes their audio stream available for translation. Only after this speaker-side connection is

open can other users initiate a listening session by connecting to: /listener/{speaker-

user-id}/language} where {language} specifies the desired translation output (e.g., it for

Italian, es for Spanish).

Once both a speaker and at least one listener are connected, an intermediate socket layer

activates a third connection to a transcription-translation model, hosted on a separate

WebSocket service. The model receives batched audio streams from the speaker, performs

automatic language detection, transcribes the content, and dynamically generates text

translations for each requested language.

The architecture is optimized for GPU and computational efficiency:

• One transcription process is shared per speaker, avoiding duplicate audio processing.

• Translation is executed once per language, regardless of how many users request it.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 53

• This means unlimited listeners per language can receive real-time translations without

additional processing overhead.

Translated messages are delivered to each listener through the /listener/{speaker-user-

id}/language} socket. Upon receipt, the translated text appears in the user interface,

displayed in a panel directly below the avatar of the speaker (Figure 30) , maintaining spatial

and conversational clarity.

Moreover, the architecture naturally supports multiple speakers operating in parallel. Each

speaker is identified by a unique user ID (/speaker/{speaker-user-id}), allowing

concurrent translation sessions to run independently for different speakers, each with their

own set of listeners and translation requirements.

The Translation System is designed to respond dynamically to user actions. When a speaker

deactivates their microphone, the /speaker/ socket is closed. When listeners deselect

translation, their respective /listener/ sockets are also closed. If no active listener remains

for a speaker, the intermediate connection to the transcription-translation model is

automatically terminated, conserving system resources.

By decoupling the transcription model from the speaker-listener communication flow, and

activating inference only when necessary (i.e., when both a speaker and at least one

language-specific listener are present), the system minimizes redundant computation and

scales effectively under load.

Presentation System (One-to-many translation, Q&A Session)

The Presentation System manages real-time translation for both the presenter and the Q&A

session. It determines the presenter based on spatial positioning within the conference room.

Specifically, when a user moves to the stage area, they are automatically marked as the

presenter. The system ensures that only one presenter is active at a time—if another user

enters the stage, no changes occur.

The system allows audience members (anyone who is not the presenter) to raise their hand

to request permission to ask a verbal question. The presenter has the ability to accept or

decline these requests. Only upon acceptance is the audience member granted permission to

unmute their microphone and speak.

The Presentation Translation System applies the same underlying architecture as the generic

Translation System described above, with minor adaptations for one-to-many communication

in the Conference Room, where typically only one person speaks at a time (the presenter or

an approved audience member).

When a user enters the stage area, the VR-Conference app designates them as the active

presenter. At that moment she/he turns on the microphone:

The /speaker/presentation connection is opened.

Instead of using user IDs, the Presentation Translation System standardizes the speaker

endpoint as /speaker/presentation and listener endpoints as
/listener/presentation/{language}.

If one of the auditors asks for translation by clicking on the translate button in their panel, a

socket is established so as to connect to /listener/presenter/{language} based on their

selected subtitle language.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 54

The intermediate socket layer connects to the model only when both the speaker (the

presenter or one of the auditors) and at least another user (the presenter or one of the

auditors) has activated translation.

The translated subtitles of the current speaker are displayed for the auditors in real-time above

the stage on a large screen. For the presenter the subtitles are displayed in front of his camera

view, like the movie subtitles.

All information exchanges—such as hand-raise requests, transcriptions, and event changes—

are managed through the Dialog server.

4.1.2 Implementation Details

4.1.2.1 Development Environment Setup

The VR Conference application was developed based on Hubs11 , an open-source web

application for interacting in networked 3D spaces, powered by Mozilla. For the development

process, the Community Edition of Mozilla Hubs was hosted on a Kubernetes cluster,

which automatically managed all the necessary services of the application. The cluster ran on

Google Kubernetes Engine12, using a 2x2vCPU virtual machine with 4 GB of RAM. In parallel,

minor changes to the application were applied directly using Mozilla’s Development Server

to reduce deployment latency.

The VR conference, being a web application, is accessible via every web browser that

supports WebGL. The virtual reality mode of the application additionally requires a VR

Headset and a web browser supporting WebXR. Almost all modern VR Headsets of the

industry are compatible with the application and in case of a standalone model, a computer is

not required, as access can be granted directly from the headset’s browser or by streaming

the application from the computer to the headsets. For development and testing, Meta Quest

2 and Meta Quest 313 were used. Due to compatibility reasons streaming the application to

the headsets required a MS Windows OS client computer.

The server side of the application, named Reticulum, is written in the Phoenix framework of

the Elixir programming language. Reticulum handles all networking functionality except for

communication media (e.g., microphone and camera), which are managed by a Node.js-

based webRTC server built on the open source MediaSoup project, called Dialog. Another

worth mentioning project, that is part of the application, is Spoke, a lightweight JavaScript-

based scene editor used for creating 3D environments.

All additional features in Mozilla Hubs were developed by modifying and extending the existing

Hubs client code, which was written in a mix of JavaScript and TypeScript. The user interface

was developed using React.js, while the 3D scenes were built using a combination of

THREE.js and Networked A-FRAME, a framework that wraps THREE.js components. All

physics simulations in the 3D world were handled by the ammo.js library.

11 https://hubs.mozilla.com/
12 https://cloud.google.com/kubernetes-engine
13 https://www.meta.com/quest/quest-3/

https://hubs.mozilla.com/
https://cloud.google.com/kubernetes-engine
https://www.meta.com/quest/quest-3/

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 55

4.1.2.2 3D Models and Scene Creation

The virtual environment of the application was designed primarily using Blender, an open-

source 3D creation suite, to sculpt geometry and customize the shading of 3D objects. The

creation of scenes representing the various rooms of the virtual conference benefited from

the Archimesh extension, an architectural modeling tool in Blender that enabled simple

and geometrically lightweight room designs (

Figure 31).

Decorative elements of the environment, including objects required for each room—such as

the booths in the Trade Show Area—were either sourced from freely licensed 3D model

libraries available online or created specifically for the VR conference application.

Figure 31. Blender Interface for room designing.

Shading elements without predefined materials was carried out using freely licensed texture

files sourced from the internet. New textures were created and assigned to the

corresponding 3D models as needed (

Figure 32). To maintain optimal runtime performance, all textures were kept at medium to low

resolution.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 56

Figure 32. Blender Interface for shading.

Once a space was completed in terms of design and shading, the models were exported as

a single file using Blender’s GLTF/GLB exporter, since GLB is the only supported format for

3D model importing in Hubs. Final editing took place in Spoke, where the 3D model was

imported into a new scene and supplemented with lighting sources (

Figure 33). Additional Hubs-specific components—such as connection gates to other

preconfigured rooms and user spawn points—were added to the scene before it was

published.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 57

Figure 33. Mozilla’s Spoke Interface.

When a participant enters a room of the application, a random published scene is loaded on

their device. Since the scene of each room is configurable, publishing a finished scene enables

the association of it with a specific room. With this process, all different VR conference rooms

have been created associated respectively with the Lobby Room, the Trade Show Area, the

Conference Room, the Business Room, and the Social Area scene.

4.1.2.3 Core Algorithms and Techniques

Dijkstra Algorithm

The Virtual Agent assigned to each user of the application should provide efficient instructions

for navigation when requested, both in textual and graphic format. The process of calculating

the shortest path from a starting to a destination point is done by implementing the Dijkstra

algorithm [18], which is a shortest path finding algorithm based on weighted graphs.

For the Dijkstra algorithm to function properly, when a user enters a scene and the application

retrieves the properties of the room, a node grid is constructed on the fly to map the VR space.

The grid's density is a configurable value that also gets retrieved with the fetched room

properties. Extra nodes, such as available destination points of the navigation system and

hardcoded areas are appended to the node grid.

To progress from a node grid to a weighted graph, specific rules to determine adjacency are

applied to each node. The rules define the maximum distance between neighboring nodes,

forbid diagonal edges and set the weight of each edge as the Manhattan distance between

the connected nodes. The Manhattan distance of two points represents the sum of the

absolute differences of their Cartesian coordinates.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 58

Once the graph is calculated, the system is ready to accept navigation requests. To process

the user query, Dijkstra algorithm assigns a tentative distance value to every node. The

starting node is set to 0, and all other nodes are set to infinity. A priority queue is used to keep

track of the nodes with their tentative distances, prioritizing the node with the smallest one.

While there are unexplored nodes, the node with the smallest tentative distance is selected

from the priority queue and the tentative distances of all its neighbors through the current node

are calculated, get compared with the current assigned value, and updated if the new distance

is smaller. Once a node has been explored and its neighbors are updated, it is marked as

visited to avoid redundant calculations. This process is repeated until the destination node is

reached. The algorithm's output contains the list of nodes from the source to the destination,

constructed by following the predecessor’s link from the destination node back to the source.

Entity Component System

The software architecture of the application is based on an entity component system. Entity-

Component-System (ECS) is an architectural pattern commonly used in game development

to organize and manage the complexity of entities, their behavior, and their interactions. It's

designed to improve modularity, reusability, and performance of the application. The

application’s ECS architecture consists of three main components.

1. Entity: A general-purpose object in the 3D world. It doesn't have any inherent behavior

or data associated with it. Instead, it serves as a container for components. Entities

are represented as a unique number in the application. A basic example of an entity in

the VR Conference is the Virtual Agent of the user.

2. Component: A modular, reusable piece of functionality or data that can be attached

to an entity. Components define specific aspects of an entity's behavior or appearance.

For example, the component “Agent” is attached to the Virtual Agent entity to store

some references of other entities necessary for the functioning correctly, such as it’s

text panel.

3. System: A system is responsible for processing entities that have specific sets of

components. Systems encapsulate the logic that operates on entities with particular

component configurations. Each system focuses on a specific aspect of the application

and operates independently. The Agent System contains all functionality of a virtual

agent and every entity that has the Agent component attached to it, is processed by

this system on the main loop of the application.

4.1.2.4 User Interface Implementation

The application introduces to the user multiple UI elements both for toggling available

functionalities and displaying output once available. Additional functionality was developed in

a way that tasks are activated as automatically as possible, to avoid overstimulating the user

with redundant information. However, when user requirements define that a mechanism

should not be intrusive, the presence of a UI toggle could not be avoided.

User Panel

The user panel (

Figure 34) is the main UI element of the VR conference application. It is a system bar that

appears at the top of the user’s POV (Point-of-View) whenever they move their head upwards

and it functions as a control center, containing multiple toggle buttons. From the user panel, it

is possible to enable/disable the presence of the Virtual Agent in the 3D environment, the Map

component, the help slides, and during the main presentation ask for a question or

enable/disable subtitles. When one of the above components is active in the virtual

environment, the respective toggle is highlighted with a blue ring, to indicate its status.

Additionally, when a functionality is not available for a specific room the icon is not shown.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 59

Figure 34. User Panel element.

Map Component

If enabled from the user panel, a 3D map renders in the 3D scene, configured to change its

position and orientation according to the user’s. The Map panel (

Figure 35) displays the top view of the scene’s room on a smaller scale, along with informative

text about the room’s objects. To enhance the experience, a system that tracks the user’s

position relative to the space, maps it to an overlaying red dot on the map to help them orient.

This tracking system is dynamic, and it gets updated in real time, so that the participants can

see the impact of their movement on the map.

Figure 35. Map Component for the Trade Show Area.

Help Panel

Behaving in a similar way to the Map component, when selected from the User Panel, a

Help Panel (

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 60

Figure 36) that provides help slides on how to interact with the application, is appended to the

3D scene. By clicking on the arrow buttons, the user can move to the next or previous slide.

These slides are accessible from all rooms of the application.

Figure 36. Help slides.

Translate Button & Panel

In rooms where the application permits one-to-one or many-to-many communication and

translation, every participant has a predefined spatial border around them. The system

computes the relative distance from one participant to all the others in order to detect when

someone has crossed this border. If this happens, a button on top of every avatar’s head

with the translation icon appears in the 3D scene (

Figure 37). Pressing this button, it will activate the real-time translation system and if all

conditions are met, the translation will start. While a user is selected, the application

continues to calculate the relative position of the remaining avatars inside the scene, so the

option to change target becomes trivial and not time-consuming. When translation is

activated for a user, the translation button transforms to a cancelation button that by

pressing it, disables the translation for this specific target. If a target is selected, a text panel

gets rendered in front of them. The value of this panel (

Figure 38 Right) contains initially a phrase in the user’s language, informing them that the

translation output will appear on this element.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 61

Figure 37. Translate Button element.

Lobby Tutorial Slides

The first room users encounter upon entering the application is the lobby room. Its primary

purpose is to help users familiarize themselves with the VR space and learn the application's

controls. To achieve this, a dedicated interactive tutorial system was developed.

The tutorial is presented through a series of slides containing images and GIFs, and it is

displayed in the user's selected language. Users are guided through essential tasks such as

moving, teleporting, rotating, interacting with the user panel, and engaging with the virtual

agent.

A built-in task detection system monitors user actions and verifies when each task is

successfully completed. Once a user finishes the tutorial, they have the option to either restart

it from the beginning or proceed to the next room, the main area of the application.

Virtual Agent

When the virtual agent (VOXY) is enabled, a text panel appears in front of it, displaying the

textual output of the dialogue system (

Figure 38 Left). The information that gets displayed on this panel contains greeting messages,

responses of the dialogue agent module and potential error messages. The panel is scrollable,

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 62

maintaining a fixed size, and users can navigate through the text using the scroll wheel (in

laptop mode) or the controllers (in VR mode).

Above the agent, up to two suggestion buttons may appear. These buttons are generated by

a suggestion system that tracks the user's progress and remaining tasks, providing relevant

queries for the virtual agent. When a user selects a suggested query, it triggers the same

process as a voice command but bypasses the transcription model. Once a suggestion is

used, it is marked as resolved and will not be shown again.

Figure 38. Virtual Agent Panel (Left), Translation Panel (Right).

Loading animation

The last UI element is a panel of the Virtual Agent to keep the participant updated about

their request status (

Figure 39). While they are phrasing their message to their assigned Agent, five dots with a

breathing animation appear, indicating that their question is indeed being recorded. When the

recording stops, while the voice message is being analyzed and until an output is sent back

to the user, the same dots change to a loading animation, confirming that their request has

been successfully sent and it is being processed.

Figure 39. Loading animation.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 63

The last UI element is a panel of the Virtual Agent to keep the participant updated about their

request status. While they are phrasing their message to their assigned Agent, five dots with

a breathing animation appear, indicating that their question is indeed being recorded. When

the recording stops, while the voice message is being analyzed and until an output is sent

back to the user, the same dots change to a loading animation, confirming that their request

has been successfully sent and it is being processed.

4.1.2.5 Summary of Achieved User Requirements

In summary, we have successfully fulfilled 40 of the 49 user requirements for the VR

Conference application, including all of the 32 high-priority, 7 of the 10 medium-priority and

one of low-priority. Users are represented as virtual avatars; each assigned a dedicated virtual

agent with a cartoonish appearance. These agents not only provide welcome greetings but

also interact with users on demand. For navigation within the XR environment, a virtual map

is available, along with clear visual cues in the form of drawn lines on the floor, guiding users

to their destination. Furthermore, the system provides real-time translation in five languages

(German, Dutch, Italian, Spanish and Greek). Those translations are available in textual

format, and subtitles can be toggled on or off. Each speaker has uniquely assigned subtitles,

ensuring a seamless and immersive experience.

Table 6. VR Conference. Achievement of user requirements

Type Requirements Priority
Final

Status
Reasoning

1 General The experience is in VR. High YES

2 General
Provide user navigation and
language translation at the virtual
conference.

High YES

3 General

Develop a virtual assistant providing
users with relevant information to
navigate virtual spaces, interact with
other visitors, and exchange
relevant information.

High YES

4 General
The operational output language is
English, and it can be translated
into other languages.

High YES

5 Scenario
The conference venue should
imitate the environment of a
professional conference setting.

High YES

6 Scenario
The users will be represented as
virtual avatars.

High YES

7 Scenario
The virtual avatars of the
participants will offer predefined set
of gestures.

High YES

8 Scenario
The presentation should be in a
predefined conference format.

High YES

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 64

Type Requirements Priority
Final

Status
Reasoning

9 Scenario
The suggested duration for a single
VR session is 30 minutes at
maximum.

High YES

10 Assessment
The target user includes
conference partners and visitors
with diverse backgrounds.

High YES

11 Assessment
The suggested number of
participants per session is ~10 to
20 people.

Medium YES

12 Assessment

The quality of experience will be
assessed by a questionnaire
followed by a semi-structured
interview.

High YES

13 Virtual Agent

A dedicated virtual agent will be
assigned to each user and will stay
with him/her during the complete
duration of the conference.

High YES

14 Virtual Agent
The virtual agent should provide
welcome greeting.

High YES

15 Virtual Agent

The virtual agent should provide
help, FAQs and prompt the users
about the context/content of the
venue and potential to-do (action)
items in advance or relative to the
current activity.

High YES

16 Virtual Agent

The virtual agent will help user to
navigate the space, answer
programme-related questions, and
deliver relevant information.

High YES

17 Virtual Agent
The users should have a "skip"
option for the virtual assistant help.

High YES

18 Virtual Agent
The communication with virtual
agent should be enabled by voice
typing.

High YES

19 Virtual Agent
The communication with virtual
agent should be enabled by text.

Low NO

Effort was
allocated to oral
communication

instead

20 Virtual Agent
Virtual agents deliver personalized
info feeds related to the conference
programme-related activities.

Medium NO

 Focus was
placed on high-

priority
requirements

instead.

21 Virtual Agent
The virtual assistant can be
accessible via a smart-watch /
wrist-band.

Low NO

Focus was
placed on high-

priority
requirements

instead.

22 Virtual Agent
The virtual-assistant should auto-
save relevant information and
provide them in an exportable file.

Medium NO

Focus was
placed on high-

priority
requirements

instead.

Type Requirements Priority
Final

Status
Reasoning

23 Virtual Agent
The virtual agent should present
users with most relevant

High YES

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 65

available options at the end of
every session.

24 Virtual Agent
The virtual agent should interact
with the users on-demand, and
should not be intrusive.

High YES

25 Virtual Agent
Virtual agent should be likeable,
friendly, pleasant, customizable,
realistic and complete.

Low NO

Focus was
placed on

high-priority
requirements

instead.

26 Virtual Agent
Virtual agent could look like a
cartoony avatar.

Medium YES

27 Navigation
Quick get started tutorial option
should be available.

High YES

28 Navigation
Virtual map should be available
to navigate the conference
venue.

High YES

29 Navigation
Flyover view of the venue should
be available with zoom in/out
options.

Low YES

30 Navigation

Navigation to the target location
should be guided by visual cues,
arrows, marks/lines on floor etc
depending on the context.

High YES

31 Navigation

Users should be assisted for
quick and easy navigation
between different places in the
venue.

High YES

32 Subtitles
Translation should be available
in textual format.

High YES

33 Subtitles
Translation should be available
in voice (audible) format.

Low NO

Focus was
placed on

high-priority
requirements

instead.

34 Subtitles
Option to mute the complete
room or individual speaker(s)
should be available.

High YES

35 Subtitles
Users should be able to control
the volume +/-

High YES

36 Subtitles

Users should be able to turn
on/off the program, subtitles,
auto-translation and voice using
interactive buttons.

Medium YES

37 Subtitles

For multi-speakers, the subtitles
should highlight and differentiate
the active speaker among group
of speakers.

Medium YES

38 Subtitles

The standard/default subtitles
should be displayed on the
bottom of the screen and in
particular cases the subtitles
should be placed relative to the
virtual environment context.

High YES

Type Requirements Priority
Final

Status

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 66

39 Subtitles

For head-mounted
display, the subtitles
should be visible and
placed without masking
other important parts in
the display/screen.

High YES

40 Interface
There should be a
customizable dashboard
visible at all times.

Medium YES

41 Interface
A help button should be
visible on the corner of
the screen.

High YES

42 Interface

In the conference room,
users can choose the in-
room view options i.e., full
screen and/OR
conference room view.

Medium NO

Focus was
placed on

high-priority
requirements

instead.

43 Interface

Questions/feedback from
the audience should
appear textually/visually
near the presenter's
screen.

Medium YES

44 User Interaction

Users should be able to
engage with speakers
and guests during Q&A
session(s).

High YES

45 User Interaction

Users can interact with
the agent and ask the
agent questions during
the navigation.

High YES

46 User Interaction

Users should have
options to use hand-
gestures to interact with
the system.

Low NO

Focus was
placed on

high-priority
requirements

instead.

47 User Interaction

Users should have
options to use interactive-
buttons on the screen to
interact with the system.

Medium YES

48 Extra
Dialogue Agent should be
available on demand.

High YES

49 Extra

Users should be able to
make digital and crypto
payments in the
conference items shop.

Low NO

Focus was
placed on
high-priority
requirements
instead.

4.2 Augmented Reality Theatre

The Augmented Reality Theatre application is intended for use in AR-enhanced theatrical

performances, providing audience members with personalized augmented reality audiovisual

and textual content to address both accessibility and entertainment needs. According to

gathered user requirements, the application must deliver timely, translated captions in the

user’s preferred language (high priority) and trigger visual effects (VFX) at specific moments

in the performance, based on both verbal and visual cues predefined by the theatrical director

(high priority). Smooth onboarding for non-experienced users and extensive personalization

support were also required.

Given that the application’s primary aim is to provide a synchronized, but also personalized

experience across the audience, a server-client architecture has been implemented, which

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 67

can ensure centralized control, quality assurance, and synchronization. The server

communicates with the VOXReality services and distributes the appropriate messages to the

clients in the audience as illustrated in Figure 40.

Figure 40. AR Theatre system - high level overview

In more detail, the server receives live audio input from the actors via microphones, generates

transcripts using VOXReality speech processing models, and streams the resulting caption to

each client. The AR Theatre use case adopts a streaming and matching approach for the

transcriptions to adhere to the high-quality standards of artistic text. In parallel, a visual feed

from a camera is processed to produce scene descriptions via VOXReality vision-language

models. The scene descriptions themselves are not streamed to the clients but rather used by

dedicated logic in the server to detect the occurrence of specific stage events - like the

appearance of an actor on stage. Finally, both the received transcript and the detected stage

events are processed on the server-side as triggering conditions for sending keywords to the

AR clients, which activate associated audiovisual effects (VFX) when received, as illustrated

in Figure 41.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 68

Figure 41. VFX triggering methods using verbal and visual cues

On the client side, the captions can be translated based on the user’s language preferences.

In the first version of the system, translations were generated in real time via HTTP requests

from the clients to VOXReality language services. However, to minimize latency, reduce

redundant simultaneous requests, and support literary quality control of the translations by the

theatrical stakeholders, the second version of the system uses pre-generated (offline) and

human proofread captions. The end-product has been curated by literary experts and stored

as cloud resources, which AR clients retrieve during the performance to deliver linguistically

appropriate content to each viewer.

The detailed architecture of the AR Theatre system, detailing the positioning of the VOXReality

ASR, VL, NMT services, as well as the detailed of the network communication, is illustrated in

Figure 42.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 69

Figure 42. AR Theatre architecture - detailed version

The user requirements documented in D2.2 Definition and Analysis of VOXReality Use Cases

instruct not only the system architecture, but also aspects of the AR application design.

Specifically, since the application is designed for audiences with little or no prior experience

with augmented reality, it must include an onboarding sequence before the performance

begins. This phase should provide familiarization with AR technology, introduce key features

of the application, and include a step-by-step tutorial on the interface and available

customization options to ensure accessibility and ease of use. In addition, in terms of hardware

requirements, the system should allow the user to view the theatrical stage overlayed with the

digital 3D content with the maximum possible field of view and impose the least distractions

and obstructions from the physical stage events. Furthermore, the application should operate

without voice commands, in low light conditions, and with minimal requirements in terms of

somatic components, like gestures. Therefore, suitable hardware options for this use case are

only considered to be in the format of augmented reality glasses (e.g. not camera-based AR

on smartphones) and input modalities to the application are restricted to using a dedicated

controller.

4.2.1 System Architecture and Design

As presented in short above, the AR Theatre system architecture is designed as a modular,

client-server framework that enables synchronized delivery of multilingual subtitles and

audiovisual effects (VFX) to the end-user through wearable augmented reality devices. The

system is comprised of three components: (i) the AR client, deployed on AR headsets; (ii) the

control server, deployed on a laptop device, operated by the venue staff; and (iii) the AI

inference services, hosted within Docker containers and accessed via APIs, with multiple

deployment options.

The AR application runs as a native Unity-based XR experience on the Magic Leap 2 AR

device, which supports controller-based input, optical see-through with a large field of view

with waveguide rendering. The AR application renders captions, VFX, and graphical user

interface elements. Each AR application subscribes to a WebSocket-based communication

channel with the control server, enabling real-time synchronization and remote configuration.

Thus, the AR application is foremostly controlled by the audience but can also be remote

controlled by the operator for synchronization purposes, such as announcing the start of the

play. User preferences, such as language and caption display settings, are locally stored, do

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 70

not persist across sessions, and are applied at runtime, thus allowing for personalized

experience for multiple changing users.

The control server serves as a command hub and status monitor. Operators can remotely

initiate performance phases, trigger director-defined cues for VFX overlays, and monitor

headset connectivity and system health. The detailed functionality of the control server and

the respective user interface is presented in section AR Theater control server4.2.2.4.1.

The server communicates with the VOXReality AI components – i.e. the Automatic Speech

Recognition (ASR) and Vision-Language (VL) services - through containerized services.

Communication with the services is configurable on the user interface to accommodate

flexibility in the deployment options, such as on edge or on cloud. Neural Machine Translation

(NMT) is also used as part of the overall solution, specifically for offline generation of captions,

and is therefore not used during the delivery of the performance and not connected to the

control server.

The above system uses two more assets:

• a csv file containing the script segmented into captions, optimized for AR display. This

asset is created by a human editor through a process of segmenting the theatrical

play’s script into caption-sized segments manually. The average length of a segment

is suggested by the audio sampling length of the ASR service – for a recommended

sampling duration of 3 seconds, a segment length of about six (6) words is

recommended. The exact length of each segment can vary slightly based on

semantics and grammatical rules of the current language. The asset is provided to the

ASR service by the control server, to receive back a transcription free of any potential

spelling errors and formatted to the level of detail desired by the theatrical stakeholder.

The ASR streaming and matching service used in the AR theatre is described in detail

in deliverable D3.1.

• a csv file containing the translations of the original captions in all the available

VOXReality languages. This file is generated using the NMT service and is edited by

a human editor (a professional translator) to achieve the desired literary quality and

ensure human oversight of the content. This asset can be hard coded in the AR client

application and can be used during the runtime for retrieval of the desired translation

based on the current original caption received by the control server. Alternatively, this

asset can be downloaded from a cloud location at initialization of the AR client

application to allow edits to the content after application compilation for higher flexibility.

Figure 43 illustrates the above-described path of information for NMT and ASR in the

AR theatre use case and highlights the interplay between human and AI elements.

Figure 43. Use of NMT service in AR Theatre

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 71

The initial system architecture which was presented above can be extended to include one

more component, the audio player client, which can respond to trigger words emitted by the

control server, just like the AR clients. The audio player handles the audio dimension of the

virtual effects and is connected to the audio system of the theatrical stage to produce a

surrounding audio effect in sync with the virtual effects delivered through the AR glasses. This

allows for a collective yet personalized audiovisual artistic experience.

Figure 44. AR Theatre architecture - extended version

The above presented architecture has been designed to minimize the network traffic, thus

accommodating scalability for diverse theatrical venues, with improved network robustness

and system performance.

4.2.1.1 3D Models and Scenes Design

The only component in the AR Theatre system that has a 3D virtual environment is the AR

Theatre client. The AR Theatre client application has five distinct virtual environments:

1. “Main menu”, which allows the user to choose their preferred language and access the

other scenes in a recommended order.

2. “Introduction to device”, which presents the basics of the chosen AR device to the user,

and demonstrates hands-on the available input methods and interaction patterns

3. “Tutorial to application”, which demonstrates in a step-by-step and hands-on approach

all the features of the AR Theatre application

4. “Extras”, which contains information about the play and the performance

5. “Performance”, which is the scene of main interest hosting the audiovisual content and

related functionalities

6. “Credits”, which displays the ending credits for the theatrical performance.

Scenes 1, 2 and 3 are mainly equipped with graphical user interface elements and simple 3D

models for illustration and comprehension purposes, as detailed in the section 4.2.2.4.2.

Scene 4 is the main performance scene, rich in visual content.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 72

The visual content for the AR Theatre application was designed and created by a dedicated

team of multimedia digital artists under the guidance and supervision of the theatrical director

appointed by AEF. The design process was iterative and took the technical limitations and

affordances of the AR hardware and physical stage setup into account. Initially, ideation began

with hand-sketched storyboards used to align the creative vision with the theatrical director

and to establish a preliminary layout of the key scenes, as sampled in Figure 45. These visual

drafts provided a shared reference for both artistic intent and spatial composition.

Following this, the scenes were decomposed into a concrete asset list, with each item

categorized as either a 3D or 2D element. Assets were then distributed among expert

collaborators according to their respective domains—such as 3D modelling, VFX, or UI

design. Prototype assets were produced to validate feasibility on the target AR platform and

to assess their aesthetic integration with the live stage. These prototypes underwent

refinement through iterative in situ testing with the Magic Leap 2 headset, allowing for

adjustments in scale, position, animation timing, and user visibility. This process ensured that

all digital augmentations harmonized with the dramaturgical flow and respected the physical

affordances of the venue, as shown in a sample in Figure 46.

Parallel to this process, detailed measurements of the physical performance space were

conducted to inform spatial constraints, anchor calibration, and user viewpoint considerations,

with the end-result illustrated in Figure 47.

Figure 45. Storyboard excerpts

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 73

Figure 46. From storyboard to final assets over iterations

Figure 47. Matching the physical and digital space elements in the scene design

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 74

4.2.1.2 Application Workflow Diagram

The AR Theatre application follows a client-server model orchestrated through a series of

coordinated runtime stages. There are two main user stories: for the venue operator, handling

the control server, and the audience, handling the AR client. The system initiates with the

server-side configuration phase managed by the operator.

Venue operator user journey and application flow – prep phase

The venue operator connects the microphones (wireless Bluetooth connection) and camera

(wired USB connection) to the device running the control server and positions them

accordingly on the stage and actors. The operator configures the communication settings with

the AI services on the control server based on the current deployment, e.g. on device

(localhost), on edge or on the cloud. The operator configures the ASR streaming and matching

service parameters based on the current play (e.g. spoken language should be Greek) and

starts the Websocket connection with the service. The operator can perform some mic tests

to establish the average confidence value of the results given the microphone quality and

acoustics. After microphone check is complete, the venue operator can mute the microphones

until the play starts. For lab conditions with RODE Wireless ME microphones, an average

value of 35 confidence rating is recommended. In addition, the venue operator can set the

query interval to the VL services that will receive the camera feed. A frequency of one query

every 3 seconds is recommended. Lastly, the operator can start the WebSocket connection

available to the AR clients. When the performance is ready to start, the operator will unmute

the microphones, start the VL querying routine, and remote control all AR clients to initiate the

performance scene.

Audience user journey and application flow – prep phase

Simultaneously, the audience initializes the AR application in the Magic Leap 2 devices, which

automatically upon initialization establish a secure WebSocket connection with the server. The

WebSocket connection IP and port are configured remotely by the operator using the Unity

Remote Config service, providing flexibility to the system network. The users are prompted

first to complete a tutorial introducing the AR device components and input methods (buttons),

as well as a second tutorial introducing the AR application interface and functionalities. This

process should happen in advance of the performance and with instructor support, if required.

Venue operator and audience user journey and application flow – performance phase

When all members of the audience have completed the onboarding process, the performance

is ready to begin, and the system enters the live synchronization phase. The operator uses

the remote-control interface to initiate the AR client’s performance scene, unmutes the

microphones and starts the automatic photographing routine. The operator’s main task after

this point is to monitor the smooth performance of the system, e.g. detect any system failures

or client disconnects, since the rest of the application flow is automated. Specifically, the

server streams the audio feed to the ASR services and receives a message with the

transcription response (caption). A filtering of the responses based on the confidence value is

applied to suppress any responses triggered through background noise or improper audio

stream segmentation. The approved captions are broadcast over the network to all clients,

which in turn update their rendered overlays accordingly. If the user has requested for

translated captions, the AR client displays instead the pre-generated translation, which is

retrieved from a disk-stored resource, using the just received caption as key. This allows the

entire audience to remain in sync while accommodating language personalization.

The server also automatically uses the connected camera to take photographs of the stage

with the preconfigured frequency and provide them to the VL service for processing. For the

piloted play, the director asked to detect the entrance and the exit of an actor on the stage.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 75

Therefore, the desired physical stage events to look for were programmatically interpreted as

changes to a VL query of “Is there a human present in this photograph?”. A change from “yes”

to “no” or vice-versa provided a notification for a “actor entrance” or an “actor exit” event.

Finally, both the received captions from ASR and the stage events from the post-processing

of the VL queries are checked by a subscribed subroutine called “VFX trigger manager”. This

subroutine requires at initialization a “VFX plan”, i.e. csv with pairs of conditions and

associated keywords. This asset can be retrieved from disk from the control server, and it can

optionally be downloaded from a cloud location for fast and easy updates to the content, which

is especially useful during rehearsals. Upon detecting a keyword associated with the current

caption or stage event, the VFX trigger manager uses the WebSocket connection to transmit

to the AR clients the associated keyword(s). These keywords are in turn associated with

artistic VFX in the AR clients (or any other programmatic response).

A diagnostic loop on both client and server layers monitors system health, connection state,

and logs any anomalies. In the event of a disconnection or synchronization issue, the server

can issue reconnection commands or switch clients to fallback modes (e.g., preloaded subtitle

track). Finally, a data logging plan was installed across the system to capture the behaviour

and performance in detail, as shown in Figure 48.

Figure 48. Data logging plan

4.2.2 Implementation Details

4.2.2.1 Development Environment Setup

The AR Theatre system comprises two main components: the control server and the AR client

application, both developed within a unified technology stack centered around the Unity game

engine (version 6000.031f1). This environment was selected for its broad compatibility with

Magic Leap 2 hardware, support for real-time 3D rendering, and seamless integration with

extended reality (XR) toolkits.

For communication between server and client, the system employs WebSocketSharp for bi-

directional messaging and .NET System.Net.Http for REST-based asynchronous data

exchanges. All message payloads are serialized using Newtonsoft JSON, selected for its

reliability, performance, and wide adoption within .NET ecosystems. Communication between

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 76

components is secured via TLS, with certificate validation layers enabled during deployment

to ensure data integrity across the transport layer.

For AR client development needs, the OpenXR framework with the Magic Leap 2 feature

extension was used, as provided by the Unity XR Core package and the Magic Leap 2 SDK.

The XR Interaction Toolkit was adopted for handling interactions and input abstraction. A

variety of commonplace tools, like TextMeshPro for high-fidelity text rendering (notably for

multilingual caption overlays), Unity Localization for localizing the user interface, Sirenix’s

Odin Inspector, and Unity Services’ Remote Configuration, were utilized to streamline

development workflows and enhance inspector usability during rapid prototyping and

debugging. The Magic Leap 2 AR headset served as the primary deployment target. The build

target was configured for Android x86-64 with Magic Leap-specific runtime options. The build

used Unity’s IL2CPP scripting backend, which ensures performance and binary-level

optimization for deployment on Android-based AR systems. Android Debug Bridge (ADB)

tools were used extensively during development for deploying, managing, and debugging

application packages directly on the devices. In addition, the Magic Leap Hub (version 3)

provided additional installation tools, firmware update support (version 1.12) and live

streaming for application debugging and documentation.

From a version control perspective, the development team employed Git as the source control

system, hosted on GitHub, with Git LFS enabled to manage large binary assets such as

textures, models, and animation files. A conventional branching model (main, feature

branches) was used to isolate development stages. All builds were versioned manually, and

build artifacts were tagged and archived for traceability and reproducibility.

To support developer onboarding and reproducibility, Unity dependencies were managed via

the Unity Package Manager and the NuGet package tool, and internal documentation was

maintained using structured README files and diagrams in whiteboards. These resources

enable transparent replication of the development environment across devices and

contributors.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 77

Figure 49. Development tools: Magic Leap Hub 3

Figure 50. Development methods: diagrams and mockups for multidisciplinary collaboration

4.2.2.2 3D Models and Scene Creation

The visual assets for the AR Theatre experience were produced through a combination of

digital techniques selected to balance artistic quality with technical feasibility on standalone

AR hardware. A significant portion of the assets - including character motifs, environmental

overlays, and symbolic visual effects - were modelled, textured, and animated using

established 3D content creation pipelines, with a particular preference for free and open-

source software such as Blender. This choice reflected both cost-efficiency and compatibility

with the team’s distributed production environment.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 78

To achieve a distinctive visual identity though, a hand-painted aesthetic was also employed.

Textures for 3D models were manually illustrated using digital painting techniques, providing

a stylized, expressive finish. For animated 2D elements, a hybrid production methodology was

followed: base layers were created through digital illustration, while animation was carried out

either through traditional frame-by-frame workflows (optimized at 12 fps for performance

reasons) or via digital keyframing. These animations were developed using professional-grade

software such as Adobe After Effects and Adobe Photoshop. The use of proprietary tools in

this context was necessitated by both the advanced feature set required and the creative

team’s existing expertise, given the limited availability of equivalent free/open-source

alternatives supporting high-quality 2D animation pipelines. In addition, particle-based VFX

were created using Unity’s Visual Effect Graph tool.

From a technical standpoint, significant attention was given to asset optimization. All 3D

models were evaluated for polygon and triangle count and were subject to mesh simplification

procedures. Textures were consolidated into atlases and compressed appropriately to

minimize memory load. Shader complexity and rendering parameters were tuned to ensure

the application maintained consistent performance under standalone AR conditions, with

particular emphasis on maintaining a stable frame rate and responsive rendering.

Figure 51. Custom created 3D model using Blender with hand-painted textures

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 79

Figure 52. Procedural Visual Effects using Unity's Visual Graph

4.2.2.3 Core Algorithms and Techniques

The AR Theatre system has various algorithms to support the functionalities described in the

above sections and visualized in detail from an end-user perspective in the User Interface

Implementation section. In this section, the core VOXReality algorithms are chosen for a more

detailed and technical presentation:

4.2.2.3.1 Transcription

As mentioned, the AR Theatre system targets the ASR streaming and matching approach.

This service is provided as a pre-built docker container, available for downloading and running

from the VOXReality Dockerhub profile (docker pull

voxreality/draft_asr:audio_streaming_subtitle). Alternatively, it can be downloaded and

composed from scratch from the “speech-translation-demo” repo hosted in VOXReality’s

GitLab service, targeting branch “whisper_streaming_subtitles”. (https://gitlab.com/horizon-

europe-voxreality/multilingual-translation/speech-translation-demo/-

/tree/whisper_streaming_subtitles). In both cases, a Hugging Face token is required to run the

service, which can be issued from the HuggingFace user account page.

The ASR streaming and matching service requires to be provided at initialization with a csv

file (according to a provided template) through the endpoint “/upload_subtitles”, as shown in

Figure 53. The csv template needs to have clearly labeled headers for the referenced

language (e.g. “el”) is shown in a sample in Figure 54. Uploading the csv to the service can

be achieved with the user interface of the control server (Figure 66).

https://gitlab.com/horizon-europe-voxreality/multilingual-translation/speech-translation-demo/-/tree/whisper_streaming_subtitles
https://gitlab.com/horizon-europe-voxreality/multilingual-translation/speech-translation-demo/-/tree/whisper_streaming_subtitles
https://gitlab.com/horizon-europe-voxreality/multilingual-translation/speech-translation-demo/-/tree/whisper_streaming_subtitles

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 80

Figure 53. ASR upload subtitle endpoint

Figure 54. ASR Upload subtitle csv sample

Following that, a WebSocket connection is initialized. The first message should set up the

service configuration parameters, targeting among others the desired model, language used,

recording sampling duration, as well as smart duration flexibility based on speech activity,

illustrated in Figure 55. The user can configure these parameters using the user interface of

the control server (Figure 67). Afterwards, a WaveIn event provided by the NAudio library for

C# is used to stream audio data from the chosen microphone interface to the AI service.

Figure 55. ASR streaming and matching parameter configuration

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 81

The service responds with the raw transcription, as well as an array of matched entries from

the provided csv, alongside additional useful metadata, such as confidence rating and

processing time. A sample response is provided below for illustration purposes:

“Message Received: {"text": "O γιος του Θησέκη της Αμαζόνας", "transcriptions": [["Ο γιος του

Θησέα και της Αμαζόνας,", "Είμαι η Αφροδίτη· η θεά.", "η Αφροδίτη θα πληρώσει για το θυμό

της.", "Αχ Αφροδίτη! Δεν είναι θεός αυτή.", "Ο Ιππόλυτος τόλμησε να βιάσει τη γυναίκα του

Θησέα!"]], "lines": [[6, 1, 96, 33, 61]], "translations": [[null, null, null, null, null]],

"confidence_metric": [[41.40753979849631, 37.59546781842276, 29.08701829520962,

24.030168019455232, 23.228756905025154]], "processing_time": 0.7023236751556396,

"processed_chunk_size": 3.06}”

The value of using the matching approach is evidenced by comparing the raw transcription

(tagged “text”) with the first matched result (tagged “transcriptions”): "O γιος του Θησέκη της

Αφροδίτης" is matched to "Ο γιος του Θησέα και της Αμαζόνας", thus removing both spelling

mistakes and grammatical errors.

Lastly, quality assurance steps are implemented after the generation of a response. The first

step is based on the confidence rating and is of highest importance and reliability. Through

the control server, the user can configure a threshold value for filtering of the responses based

on their confidence rating (Figure 67). Failed responses do not get forwarded down the data

flow, i.e. do not get distributed to the AR clients or are examined for associated VFX. This

effectively suppresses erroneous responses which can occur due to background noise in the

microphones, improper segmentations of the audio streams or verbal speech unrelated to the

theatrical play that is captured accidentally.

The second step examines the logical sequence of the responses and is based on the fact

that the script of the play is performed linearly. To illustrate with a simple example, if line 19

was delivered before, the system expects to receive line 20 in the next response. If it does

not, an optional error correction routine can be triggered, which is exposed on the user

interface of the control server (Figure 68). The error routine increases the line index by one

increment forcibly if the ASR-received index does not meet the expectation and forwards this

result to the rest of the application data flow. It should be noted that none of these methods

can guarantee a successful result, since they can fall on edge cases that are hard to capture

with deterministic code. Examples of correct and wrong cases are illustrated in the branching

diagram in Figure 56 below.

Figure 56. Quality assurance methods: confidence-based filtering and error correction

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 82

4.2.2.3.2 Vision language

The VL service used in the AR Theatre is the “VOXReality Image Visual Generic Question

Answering service”. It is deployed as a Docker container and runs on device for minimal

latency. The service supports providing an explicit question, which can be configured by the

user through the user interface. For this use case, the question should be phrased in a “yes-

no” format, such as “Is there a person in this picture?”. The user can redirect the camera’s

field of view to target different areas of the stage and formulate questions with high levels of

specificity, like “Is this space empty?”, “Is this door open?”, etc. The responses are received

by a subroutine that detects changes in response content and raises relevant notifications.

Specifically, based on the example relating to the detection of “people” in a photograph, a

change from “no” to “yes” is interpreted as an “actor_entrance”, and vice-versa as an

“actor_exit” stage event. These stage events are forwarded to the VFX Triggering logic which

scans a csv file for associated keywords to distribute to the AR clients, just like with the ASR

responses. Unlike the ASR responses though which relate to VFX keywords in a 1:1

relationship, an “actor_entrance” stage event can be triggered multiple times in a play and can

be associated each time with a different VFX keyword based on the progress of the play.

Since the model cannot distinguish actors without explicit training, any actor entrance will be

described with the same stage event name and needs to be disambiguated to determine which

actor entered - and therefore which VFX keyword to use each time. To do this, the VFX Trigger

logic takes the previously delivered caption into account as a way to determining more context

about the stage event. “Figure 60. Sample of VFX plan in csv format” showcases a practical

example: the “actor_entrance” stage event in its first occurrence relates to lyrics index 0, refers

to the entrance of Aphrodite according to the director’s instructions, and should trigger the

“ActivateFireflies” and “PlayCue1” events, while the “actor_entrance” stage event in its second

occurrence relates to lyrics index 6, refers to the entrance of Hippolytus, and should trigger

the “DeactivateFireflies” event. This way the VL service can remain agnostic to the play’s

details, but still provide detailed information about the stage events.

4.2.2.3.3 Translation

The NMT translation was performed using the contextual translation service, available in a

dedicated container for optimal size, hosted in VOXReality’s DockerHub profile (docker pull

voxreality/draft_asr:translation_context). The service requires setting the source and target

language, the target text, as well as the contextual text. A screenshot of the respective

endpoint, as demonstrated with FASTAPI and included in the service, can be seen in Figure

57. For the AR theatre use case, the context was chosen to be the previous caption line of the

lyrical text, as formatted in a csv file by a human editor. The implemented code, illustrated in

Figure 58, can generate automatically the translations for a configurable amount of csv entries

and VOXReality languages, allowing for quick and easy changes to the body of text. A sample

of the end-result is sampled in Figure 59. This result is available to the AR clients as a local

or downloaded resource for retrieving the desired translation from file in runtime. It follows that

there is no exposure of the translation service in the control server, since the translation step

should be performed early on in the production process of the play, and not during the actual

performance delivery.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 83

Figure 57. Contextual translation endpoint

Figure 58. Contextual translation code block

Figure 59. Sample of translated lyrics across the VOXReality languages

4.2.2.3.4 VFX triggering logic

The VFX triggering logic is simple, but critical to synchronizing the play’s content and realizing

the artistic vision of the director, therefore is described shortly below. The VFX plan is

structured as a single csv file which contains both verbally and visually (silent) triggered VFX

keywords, as illustrated in Figure 60. The lines that are not associated with a triggering event

are included in this csv only for human understanding of the flow of the play (e.g. to assess

the chronological order and density of triggered events). In addition, the same triggering event

can be associated with multiple VFX keywords, with each keyword as a separate csv entry.

The csv is parsed at the initialization of the control server by the VFX trigger manager, who

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 84

subscribes to ASR responses and VL-based stage event notifications. The manager, upon

successfully detecting an associated VFX trigger keyword, distributes this as a WebSocket

message to all connected clients. Clients have custom logic implemented for each of these

keywords, according to detailed instructions by the director. For example, the AR clients

trigger the rendering of specific predetermined visual effects, while the audio player client

triggers the playback of specific predetermined audio effects. Figure 61 provides an example

of the triggering method in the AR client and the VFX result for the VFX keyword

“ActivateFireflies”, which is the first entry in the sample VFX plan provided below.

Figure 60. Sample of VFX plan in csv format

Figure 61. Example of a VFX trigger method and its result

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 85

4.2.2.4 User Interface Implementation

The user interface implementation section is structured in two subsections: subsection

4.2.2.4.1 is dedicated to the user interface of the AR Theatre server, which will be operated

by the theatre’s technical crew, and subsection 4.2.2.4.2 is dedicated to the AR Theatre client,

which will be distributed to the audience.

4.2.2.4.1 AR Theater control server

The AR theater server has seven panels, positioned roughly in sequence of execution:

“Network”, ”Download”, “Preview”, “AI-Services”, “AI-Audio”, “AI-Vision” and “VFX”. Panels

“Network” up to “AI-Services” are used for system setup and preparation before a performance

or rehearsal starts. Panels “AI-audio” up to “VFX” are used during the performance. Each

panel is described in detail below.

The tab “Network” (Figure 62) manages the WebSocket connection with the clients. Users can

edit the IP and port for the connection, manage the connection state (start/stop) and preview

the list of currently connected clients alongside relevant info (like client device battery levels).

This feature is critical to detect any client disconnects in the audience. A future extension

would be to report if a client disconnected gracefully (e.g. due to user command) or due to a

application crash, system crash or network failure. In addition, the user can issue remote

control commands to the clients. Remote control commands can be issued to all connected

clients or only to selected ones using the “Connected Clients” panel. Remote control

commands include setting up the user language for the AR client application and switching

scenes (e.g. tutorial scene or main scene), as well as additional commands for remote

supporting users. This is useful to minimize audience member interaction in case of

inexperienced visitors (e.g. for localization), to quickly recover from any user handling errors,

as well as to synchronize the state of the application across all members of the audience (e.g.

for scene management).

Figure 62. AR Theatre Server - Network tab

The tab ”Download” (Figure 63) allows users to download the content of the current theatrical

play from a remote location. This includes three assets: 1) the original transcript, 2) 0the

caption translations, and 3) the VFX trigger plan. All three assets need to be in csv format and

based on a given template. A sample is shown in Figure 64. The “download” feature allows

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 86

the AR Theatrical server to be content agnostic, avoids local file management for the

convenience of the user, and supports reflecting on-the-fly edits to the content. Supporting on-

the-fly edits has been proven especially useful during rehearsals, where quick iteration and

practical experimentation are key to progressing the artistic vision. Downloaded files are

stored on the persistent data path of the application on the device (e.g. for Windows

“C:\Users\<username>\AppData\LocalLow\GruppoMaggioli\VoxReality AR Theatre Server”).

Figure 63. AR Theatre Server - Download tab

Figure 64. AR Theatre Server - Content sample

The tab “Preview” (Figure 65) supports previewing the downloaded content. This helps

validate that the download process was successful and that the content was parsed correctly.

It also allows examining the content in a more engaging format than the csv with the aim to

detect potential improvements in lyrical content or formatting. Finally, this feature also allows

fast cross-checking of the content between the AR client and the server-side reference.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 87

Figure 65. AR Theatre Server - Preview tab

The tab “AI services” (Figure 66) allows users to configure the location of the VOXReality AI

services based on their current deployment option. Users can choose between cloud or edge

deployment, and edit the respective address independently for the ASR and VL services. A

text panel debugs the http request responses from the services validating their

communication. In this step, the original lyrics (which were downloaded in the previous step),

need to be uploaded to the ASR service to enable the matching process. This is performed

automatically at initialization of the application but is also available as a user interface feature

in case of live edits to the csv source file.

Figure 66. AR Theatre Server - AI Services tab

The “AI - Audio” tab is one of the most important interfaces of the application – it manages the

connection to the ASR (audio streaming and matching) service. This tab has three subpanels:

“Streaming settings”, “Response log” and “WebSocket messages”. The “Streaming settings”

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 88

panel (Figure 67) is used to set up all relevant recording and ASR service configuration

parameters, such as recording duration, silence duration, allowed accumulation, etc. It also

manages (start/stop) the connection to the ASR service over a WebSocket connection and

the microphone streaming (start/stop). In addition, it allows users to export a recording of the

audio stream for validation purposes. The ”Response log” tab (Figure 68) debugs the

unformatted responses and is only used for communication validation purposes. The

“WebSocket messages” tab (Figure 68) shows the parsed responses as properly formatted

WebSocket messages to the connected clients. As a side-note, the WebSocket connection

between the ASR service and the AR Theatre server should not be confounded with the

WebSocket connection between the AR Theatre server and the AR clients in the audience.

ASR responses are also parsed by a separate logic which detects if the performed lyric is

associated with a VFX trigger, as determined by the downloaded VFX plan. If so, the

associated VFX trigger command is also streamed as a WebSocket message to the AR

clients, as will be presented in the VFX tab.

Figure 67. AR Theatre Server - AI-Audio tab: Streaming settings

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 89

Figure 68. AR Theatre Server - AI-Audio tab: ASR response log & WebSocket messages

Figure 69. AR Theatre Server - AI-Audio tab: summary of configurable parameters

The “AI - Vision” tab manages the connection to the VL service. It supports capturing images

from any of the connected WebCamera interface of the device and automatically forwards it

to the configured VL service. After testing multiple services, the VOXReality Image Visual

Generic Question Answering service was preferred as the most flexible yet concrete

approach, as described in Section 4.2.2.3.2. The photocapturing can be automated with a

configurable frequency exposed on the user interface. Alternatively, the application can

instead load the latest image from a configurable folder on disk. This is useful in case a more

sophisticated third-party photo capturing software (such as DSRL camera software) is used

to capture and store images on disk instead. The responses can be previewed on the debug

text panel. Responses are parsed by a separate post-processing logic, which checks for

changes in the VL responses to detect events, like the presence or absence of the requested

element (like people or items on stage). For the chosen play, it was decided that the logic

should detect the entrance and the exit of actors on stage. The “actor_entrance” event and

the “actor_exit” events are then used to trigger VFX, as presented in the next and final tab.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 90

Figure 70. AR Theatre Server - AI-Vision tab – VQA with no stage event detected

Figure 71. AR Theatre Server - AI-Vision tab – VQA with stage event detected

The “VFX” tab parses the downloaded VFX plan (as downloaded using the “Download” tab

and previewed using the “Preview” tab) and generates a list of buttons for each detected VFX

trigger word. This allows a user to manually trigger the VFX on the connected clients, which

is especially useful for rehearsals. The tab also allows previewing which VFX have already

been triggered at least once in this session with a checkmark.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 91

Figure 72. AR Theatre Server - VFX tab

Lastly, the AR Theatre server has been enriched with two user interface modes to support the

specific needs of Pilot 2. As a reminder, Pilot 2 will compare between two conditions: the

baseline condition, which reflects currently mainstream available technology, and the test

condition which uses the VOXReality services. In the base condition, the operator will need to

use the AR Theatre server interface to manually send WebSocket messages (captions and

VFX trigger keywords) to the audience. To be able to time the messages, the operator will

need to monitor the stage using their senses, i.e. listen to the actors’ speech and watch the

on-stage events. In addition, the operator will need to have basic knowledge of the play to

know exactly when to send the appropriate messages. In the VOXReality condition, the AR

Theatre server should send the appropriate messages automatically using the AI services and

the feed from the microphones and cameras. The operator will need to monitor the AR Theatre

server application’s runtime instead of the stage events, and will need to know how to setup

the application, instead of knowing about each specific play. The difference between the

conditions is illustrated in Figure 73.

Figure 73. AR Theatre - Systems for Pilot 2 conditions

Given the above requirements and in order to facilitate and safeguard the piloting, the AR

Theatre server has two modes restricting access only to the pertinent features based on the

current condition. Switching between modes can be enabled from the top right corner with a

toggle. The mode for the baseline condition is termed “MA” for “manual” and is marked with a

hand icon to denote manual operation, while the mode for the VOXReality test condition is

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 92

termed “AI” and is marked with a brain icon to denote the processing of the audiovisual content

by the AI services. The “MA” interface does not have access to the “AI services”, “AI-audio”

and “AI-vision” tabs, as shown in Figure 74. Instead of the “AI-Audio caption”, the manual

mode has access to a new tab called “Captions”, which can be used to manually send lyrics

captions to the audience. To be practically useful, the operator is advised to also pin a preview

of the play in their interface, as shown in Figure 75.

Figure 74. AR Theatre Server - Interfaces for manual and AI mode

Figure 75. AR Theatre Server - manual mode interface setup

4.2.2.4.2 AR Theater AR client

The AR theatre client starts with a prompt for language selection by the audience (Figure 76).

If the user is experienced, they can use their controller to select the desired choice. As another

alternative, the venue operator can remote-control each individual client’s application and set

the language remotely based on the user’s wishes to further facilitate the process.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 93

Figure 76. AR Client - Language selection menu

After the language selection, there are three preparatory steps that the user needs to complete

in sequence before the start of the performance: the “introduction to device”, the “tutorial to

application” and the “extras” for the play.

The “introduction to device” starts automatically for inexperienced users (with a remote-control

command from the operator) and includes a hands-on step by step presentation to the device

(Figure 77). It is mandatory to complete this step to be able to proceed to the next. As an

exception for experienced users, this tutorial can be skipped. Alternatively, the venue operator

can use a remote control command to skip this tutorial for users that explicitly request to do

so.

Figure 77. AR Client - Introduction to AR device

After the introduction to the device tutorial is completed, the user is provided with a menu

panel (Figure 78) from which they can proceed to the next step, which is to complete the

“tutorial to the application”. The “introduction to the device” button is available in case they

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 94

want to repeat the content. The buttons for the upcoming phases, i.e. “extras” and

“performance”, are visible but locked, and unlock only when the user has successfully

completed the previous steps.

Figure 78. AR client – Menu panel with scene selection

The tutorial to the application contains a step-by-step explanation and hands-on

experimentation for all provided features of the application. The features relate to customizing

the display of the captions for readability and user comfort. The customization menu can be

toggle on/off with a press-and-hold button input method and provides the following

customization options: 1) (re)configuring the user language, 2) toggling subtitles on or off, 3)

setting the position and movement behavior of the captions, 4) setting the font size and weight

of the captions, 5) setting the background opacity for higher contrast and inverting the colour

foreground/background scheme (from black to white, and vice versa) (Figure 79).

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 95

Figure 79. AR Client - Tutorial to application

Figure 80. AR Client - Subtitles customization menu

Lastly, when the user has completed the tutorial to the application, they are provided again

with the home menu panel, but this time the extras button is now available for interaction. The

extras scene contains information about the theatrical play, the AR performance and the

production alongside chosen graphical elements.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 96

Figure 81. AR client - Extras scene content

After the extras scene has also been visited, the performance button is now available for

interaction. Alternatively, the venue operator can remote-control all clients to trigger the

transition to the performance scene. After a short loading intro screen, the user will experience

the captions, as configured using the customization settings during the “tutorial to application”

(their configuration is stored across scenes), and the VFX, as triggered by the received

keywords (Figure 83).

Figure 82. AR Client - Start of performance

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 97

Figure 83. AR Client - Sample scene of performance featuring captions and triggered VFX

4.2.2.4.3 AR Theatre audio player client

The optional component of the AR Theatre audio player was created to deliver audio effects

in sync with the visual effects. Although the visual effects are delivered as AR content through

each individual AR device, the audio effects were not adequately serviced through the limited

capabilities of the AR device speakers. Instead, a 5.1 audio surround system was targeted to

provide an immersive audio feeling and a collective experience across the audience. Manual

synchronization of the digital audio layer with the AR visual layer was very difficult for an

operator without AR glasses though. To cover the synchronization need in an automated way,

the audio player client was designed. Like the AR clients, the application has all creative

content (music files) included in the executable and has a WebSocket connection during the

performance. Similarly to AR clients, it responds to the received VFX trigger keywords, but

with audio playback instead of visual rendering. The user interface can be seen in Figure 84.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 98

Figure 84. AR Theatre audio player user interface

4.2.2.5 Summary of Achieved User Requirements

The majority of the user requirements for the AR Theatre use case have been achieved for

Pilot 2 (37 achieved out of 48). Table 7 presents the full list of requirements with their revised

priority, achieved status and a short justification for the user requirements marked as “not

achieved” in the “Reasoning” column. Not achieved user requirements are 9 in total, and are

listed as follows: 2 user requirements relate to participant recruitment, therefore are not

technical and not pertinent to WP4 (#14 and #15), 1 user requirement is marked as not

technically feasible by AR technology (#24), 1 user requirement is marked as not implemented

due to dependency on body tracking technology (#33), 3 user requirements are marked as

not implemented due to dependency on text to speech technology (#35, #36, #37) and 2 user

requirements are marked explicitly as not desirable by the theatrical director (#39, #47). For

further context, text to speech technology (#35, #36, #37) was not preferred for operational

reasons: using one’s earphones to listen to the synthetic generated speech would be at the

cost of losing out on the original voice of the actors and the spatialized audio surround of the

stage, which are core artistic elements. Contrary to this, the body tracking technology (#33)

was not implemented due to technological challenges that are out of the scope of this research

project. Finally, the theatrical director opted to allocate requirement #39 (“The director

specifies the capability of the users to change AR Glass settings and subtitles”) to HCI

expertise, and considered requirement #47 (“Audience can read about the play and characters

or fun facts during the session”) as likely to trigger “fear of losing out” in the audience and

negative impact attention and focus during watching the play. Instead, the requirement #48

(“Audiences can watch "behind the scene" (BTS) of the play before and after watching the

play) was considered more important and less conflicting with the live performance.

Table 7. AR Theatre - Achieved user requirements

Type Requirements
Revised
Priority

Achieved
 in Pilot 2

Reasoning

1 Objective
The objective is to introduce AR
technologies to theatre audiences.

High yes

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 99

2 Objective
Language translation and VFX
experience with AR glasses at the
theatre.

High yes

3 General The experience is in AR. High yes

4 General
The gestures and setup to operate
AR glass should not intervene other
audience's theater experience.

High yes

5 General

The possibility of the audience getting
distracted by the additional
information from AR glasses has to
be considered.

Medium yes

6 Setup
The experiment takes place at the
avant-garde theatre.

High yes

7 Setup
The AR glass setup should be easy
and clear to audiences who are not
familiar with the AR technology.

High yes

8 Setup

AR glass should give the audience
enough controls but also limit their
ability to change default/preset
settings.

Medium yes

9 Scenario
A scene from the play "Hippolytus" by
Euripides will be specially produced
and played.

High yes

10 Scenario
The length of the performance will not
exceed 15 minutes.

Medium yes

11 Assessment
Two users can watch the play at the
same time with two AR devices in a
single time.

High yes

12 Assessment

The target user is a theatergoer with
diverse background whose native
language is any of the VOXReality
languages.

High yes

13 Assessment
The target user includes who don't
know the spoken language of the
play.

High yes

14 Assessment
The target user includes who cannot
hear well.

Low No
not a

technical
requirement

15 Assessment
The target user base includes people
with vision correction glasses.

Low No
not a

technical
requirement

16 Assessment
In Greek play, non-Greek audiences
should participate in the experiment.

Medium yes

17 Assessment
Up to 50 people will participate in the
complete experiment.

Medium TBC

18 Assessment
The translation of the play will be
available in all VOXReality
languages.

High yes

19 Assessment

The audiences may experience either
one or both of the automatic
translation and the visual effects
technology.

High yes

20 Assessment
The user evaluation may include
combined demonstration of
translation and VFX components

Medium yes

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 100

21 Assessment
The creators of the performance may
be asked to evaluate the experience
through semi-structured interviews.

High yes

22 Interface
The AR glass could have menu on the
screen to change practical settings.

High yes

23 Interface
Audience can learn about the play or
the scene.

Medium yes

24 Interface
Audience can zoom in or out the
scenes.

Low No not feasible

25 Interface

The elements in the AR glass screen
should be feasible respective to the
lighting, brightness, contrast and
related settings of the stage (theater).

Low yes

26 Interface
The interface should not include
extensive head movements.

Medium yes

27 Interface
The UI of the AR screen should
consider audience accessibility.

Low yes

28 Subtitles
The default subtitle starts with the
local language.

Low yes

29 Subtitles
The subtitles should be real-time and
available in any of the VOXReality
languages

High yes

30 Subtitles
The subtitles should provide different
caption sizes and toggle options
wherever feasible.

Medium yes

31 Subtitles
The audience should be able to fine-
tune the placement of the subtitles.

Low yes

32 Subtitles
The subtitles should not overlap with
the stage setup.

High yes

33 Subtitles
The subtitles could follow each actor
depending on the context.

Low No
no body
tracking

implemented

34 Subtitles
There should be various caption
styles (standard, speech bubble etc).

High yes

35 Subtitles
The default audio starts with the
original spoken language of the play.

Low No

no text to
speech
(TTS)

implemented

36 Subtitles
The audience should have an option
to change the language audio.

Low No
not pertinent

if no TTS
available

37 Subtitles
The audience should have option to
listen to the original language.

Low No
not pertinent

if no TTS
available

38 VFX
The VFX implementation should be
discussed earlier with script and the
plot.

High yes

39 VFX
The director specifies the capability of
the users to change AR Glass
settings and subtitles.

Low No not desirable

40 VFX
VFX can reflect or accompanies the
narration of the scene.

High yes

41 VFX
Certain words or phrases will trigger
VFX.

High yes

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 101

42 VFX
A narrator could be the person who
triggers the VFX.

Low yes

43 VFX
Location of the visual effects should
not exceed the range of the stage.

Low yes

44 VFX
The implemented VFX should not
affect the actor's actions on the stage.

Medium yes

45 VFX
The VFX should help the audience be
immersed in the performance.

Low yes

46 VFX
Style of the visual effects should be
artistically relevant to the scene.

Medium yes

47 Extra
Audience can read about the play and
characters or fun facts during the
session.

Medium No

48 Extra
Audiences can watch "behind the
scene" (BTS) of the play before and
after watching the play.

Low yes

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 102

4.3 Training Assistant

The AR Training Assistant application brings intelligent support into industrial training

environments by leveraging augmented reality and voice interaction. At its core is a Virtual

Assistant, capable of understanding natural language and responding to users through

speech, enabling hands-free and intuitive guidance during complex assembly tasks. Designed

to improve the overall training experience, the Assistant provides real-time instructions,

contextual task support, and on-demand clarification throughout the session. This AI-driven

solution is intended to be a seamless and supportive presence in the training process through

voice interaction. An ASR along with a DA from VOXReality project enable trainees get visual

and auditory support while they can interact with the agent through natural speech. The agent

can also trigger actions on behalf of the user on demand. These functionalities of the

VOXReality models enable the user to freely interact with the virtual 3D CAD models and train

in an AR space.

4.3.1 System Architecture and Design

4.3.1.1 3D Models and Scenes Design/Creation

The scene in the Training assistant application contains a 3D CAD model of a Raptor engine,

a table on top of which all the grabbable objects and the tools are placed. On the table, there

are grabbable parts of the Raptor engine, pins, nuts and bolts, screws, screw driver, QR code

scanner are present. When the user starts the training the VOXY avatar launches itself to

introduce and guide. The VOXY avatar is associated with a display panel where the texts,

videos are shown. The avatar and the panel will move to a dedicated spot on the table after

introduction. The scene has visual elements which have audible inputs during user interaction.

The images below (Figure 85, Figure 86, Figure 87, Figure 88, Figure 89) show some

examples of the scene in its preliminary stage. The scene was redesigned eventually to fit an

open-ended training mode (free mode). The images are taken as screenshots from the

windows PC without connecting to the glasses which is why the see-through effect of the

glasses is absent and the background is black. The user however, would see the surrounding

through the glasses along with the augmented training scene. This can be very useful when

the user wants to compare or fit the 3D object in the scene with the objects in the real world.

Figure 85. 3D scene with Raptor engine on the left and the table on the right

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 103

Figure 86. 3D scene with table and interactive objects – grabbed object in green and
destination in yellow with a green guiding line. Object has a tool tip.

Figure 87. The screwing logic with audio feedback

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 104

Figure 88. 3D scene with table, Raptor engine and assembly

Figure 89. 3D scene with table and display panel with a video being played.

4.3.1.2 Application Workflow Diagram

The architecture of the application (Figure 90) integrates both internal and VOXReality

software components to deliver a robust and intelligent AR training experience. Central to the

VOXReality are the AI-driven modules that enable advanced user interaction through natural

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 105

language: the VOXReality ASR model and the VOXReality Dialogue Agent (DA), also referred

to as ARTA. These services act as the cognitive layer of the system. The ASR module

captures speech input from the user via HoloLens’s built-in microphones. It processes the

audio in real time and converts it into structured textual input, which is then forwarded to the

DA.

Figure 90. Training Assistant application workflow

The DA interprets this transcribed speech to understand user intent and context within the

training scenario. It relies on a combination of natural language understanding, contextual

awareness, and interaction history to determine the most relevant support action. This could

involve answering a user query, guiding the user through an assembly step, providing

feedback about the current state of the task, or triggering an action on the Unity application

side. The actions involve showing a video of a particular step, giving a hint about the step,

skipping a step at hand, undo a step, and resetting the training scenario on demand.

In the architectural flow, these AI services are tightly coupled with the internal logic of the

application, particularly the open-ended Free Mode training system. As the user engages with

objects in the MR environment, contextual data—such as the currently selected or

manipulated object and the training step in progress—is transmitted to the Training Assistant.

This ensures that responses from the AI are relevant and tailored to the user’s current task

and progress.

Together, these components form a closed feedback loop: user actions and speech inform

the AI, and the AI responds with targeted guidance, creating a seamless and intelligent mixed

reality training workflow. This architecture not only enables a high degree of interaction

flexibility but also supports adaptive training experiences that respond to individual user

behavior and learning needs.

The technological backbone of the application is built upon a suite of Hololight components—

Hololight Stream, Hololight Space, and Hololight Space Assembly—which collectively enable

real-time, collaborative mixed reality experiences tailored for industrial training. Hololight

Stream is the foundation for high-performance remote rendering, allowing computationally

demanding visual content such as high-resolution CAD models and complex 3D objects to be

streamed directly to mobile devices. This approach overcomes the hardware limitations of

standalone headsets by offloading rendering to a remote high-performance server, ensuring

both high visual fidelity and low latency through secure web real-time communication protocols

which enhance security.

Hololight Space extends this infrastructure by providing an industrial grade augmented and

virtual reality platform for visualizing and interacting with complex 3D models in a shared virtual

environment. It operates using a client-server architecture, where the headset acts as a client

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 106

connected to a powerful rendering server. This design enables multi-user collaboration, real-

time interaction, and dynamic content updates within the same spatial context.

Central to the training functionality of the application is Hololight Space Assembly—an

experimental module developed on top of Hololight Space. Originally designed for closed-

ended or linear training workflows, Assembly facilitates industrial assembly line training

through immersive interaction with high-resolution CAD models. It supports the import of

structured training files, which define both the sequence of assembly steps and the initial

configuration of virtual components. Training tasks include physical actions such as grabbing,

positioning, and using virtual tools—for example, simulating the use of an electric screwdriver.

The training is guided by intuitive visual cues like numbered tooltips, trajectory lines, and color-

coded targets, with difficulty levels ranging from “Easy” to “Hard.”

This application customizes and extends the Assembly module significantly, transforming it

into an open-ended, adaptive training scenario. The current work emphasizes experimental

user interface and user experience (UI/UX) approaches to explore flexible training flows,

enabling a more natural and user-driven learning process that maintains the immersive and

interactive strengths of the underlying Hololight technology stack.

Open-Ended Training System (Free Mode):

Originally, the Assembly experimental module was designed for step-by-step training

scenarios. These scenarios did not align with the concept of an open-ended training

environment, as they required tasks to be completed in a predefined order. In "Easy" mode,

for example, users could not attach any object other than the one specified in the current step;

if attempted, the attachment animation would not occur. In "Medium" and "Hard" modes,

although attaching the incorrect object was technically possible, the system would mark it as

an error and the training could not be successfully completed.

To support the integration of AI models and enhanced learning, a new difficulty setting called

"Free" mode is implemented (Figure 91). In this mode, training steps can be performed in any

order, except for those steps that are logically dependent on others. The system does not

guide the user toward a specific next step; instead, users are free to begin assembling objects

based on their own decisions.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 107

Figure 91. The logical scheme of the training steps in Free Mode14.

In the Free Mode, the step number no longer indicates execution order but serves only as an

identifier. Since the system cannot determine the current step based on a predefined

sequence, a new mechanism was created to infer which step the user intends to perform at

any given moment. Each step corresponds to a training object that needs to be assembled.

The system assumes that the most recently grabbed object indicates the user’s intended step.

It retrieves the step number associated with the object and sets that as the current step for a

limited duration. This remains the current step until either the user completes it, picks up

another object (thus changing the intended step), or the set time elapses. If none of these

conditions are met, the current step resets to a default value of -1, indicating that no specific

step is currently active. This default value is also used to inform the Training Assistant when

the user has not committed to any particular step.

Another crucial feature of Free Mode is the dependency system, which ensures that users

cannot complete steps out of logical order when dependencies exist. Each step may have a

list of prerequisite steps that must be completed beforehand. When a user grabs an object,

the system checks whether all dependencies for that step are satisfied. If not, the object cannot

be attached, and the step cannot be completed. However, to maintain the exploratory nature

of the experience, the system does not immediately inform the user that a step is invalid unless

assistance is explicitly requested.

Table 8. The association between step number, training object, and the related manual
instructions

14 The steps inside a box can be done in any order; the arrows between two boxes indicate a
dependency, meaning that all the steps inside a box need to be done before doing any step inside the
box pointed by the arrow.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 108

4.3.2 Implementation Details

4.3.2.1 Development Environment Setup

The development environment is described in Table 9 for Hardware and Table 10 for Software:

Table 9. Development Environment Specifications – Hardware

Table 10. Development Environment Specifications – Software

The application is specifically developed for the Microsoft HoloLens 2 mixed reality device,

selected for its advanced spatial computing capabilities and suitability for delivering immersive

experiences. The internal software architecture consists of several critical components. At its

core is the Unity game engine, a widely adopted 3D development platform known for its robust

support for mixed reality applications. To further streamline development, the Mixed Reality

Toolkit 2 (MRTK2) is employed. MRTK2 is a comprehensive software development kit

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 109

provided by Microsoft that facilitates cross-platform MR application development within Unity,

offering built-in support for the HoloLens 2 and other compatible devices. These tools

collectively provide the foundation for implementing the core application logic and interaction

mechanisms.

4.3.2.2 Core Algorithms and Techniques

This section outlines the VOXReality software components integrated into the system.

Automatic Speech Recognition:

Within the VOXReality project, an ASR model has been developed to support natural language

transcription. It provides essential functionality to convert speech recordings into textual output

and serves as a core input method for enabling voice interaction within the training

environment. The ASR model is easily deployable through Docker by pulling it from the

VOXReality Docker Hub. Communicating with the deployed model happens via REST API.

The basic functionality needed for this use case is speech-to-text, and this is done by sending

a POST request to the endpoint <api-url>/transcribe_audio_files?source_language=en, with

inside the request body the .wav file containing the speech to be transcribed. The response to

that request will be in the response body in JSON format as shown below:

The application leverages Hololight Stream for remote rendering. Consequently, speech input

must be captured by the HoloLens microphone and transmitted to the server, which hosts the

running Unity application, i.e., Space Assembly. While Stream inherently manages

microphone access and data transmission to the server, a minor customization to its code was

implemented. This modification enables the capture of audio segments (AudioClips) with a

predefined, fixed duration. This fixed duration is necessary because the ASR API accepts .wav

files as audio files, and the AudioClips to be converted into .wav files had to be of a predefined

length. Additionally, this predefined duration directly corresponds to the recording window

activated immediately after the user says the wake phrase "Hey Voxy", ensuring the relevant

query is captured.

Figure 92. The ASR transcription endpoint

Dialogue Agent:

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 110

This model leverages AI to guide users through virtual training scenarios. It supports users by

interpreting their requests, providing context-aware responses, referencing the training

manual, and executing relevant actions to assist during the simulation.

The ARTA model has evolved through several iterations, initially focused on closed-ended

tasks. In the current form, it is capable of supporting open-ended interactions, allowing for

more natural dialogue with the user. This capability enhances its effectiveness in training

environments by delivering tailored and dynamic support based on user needs. Similarly with

the ASR model, the VOXReality Training Assistant model is easily deployable through Docker

by pulling it from the official VOXReality Docker Hub. Like the ASR, the DA is accessed via

POST requests sent to its API endpoint: <api-url>/ask. The following is an example of a

request-response pair. An example of the user request is as follows:

The response from the DA is as follows:

Although the core communication is theoretically just sending a text prompt and receiving a

text response, the primary challenge for this use case lies in providing the assistant with the

current context during each request. This is because the model needs to know the current

status of the training to generate accurate responses or activate functions at the right time.

This means the Unity application needs to send extra information to the Assistant, precisely

the current step number, which gets updated according to the Free Mode logic, and if the

current step is a dependent step that cannot be done right now. Therefore, the POST request

has the following fields: question, a string containing the user prompt, current_step, an integer

indicating the current step number, and wrong_object_flag, a boolean which tells if the current

step is doable or not based on the Free Mode’s dependency system. The combinations of

these parameters define the Training Assistant behavior in an open-ended training

environment.

From the scheme, we can see all the different cases the agent is designed to cover. First,

there is the classification of requests into Questions and Commands. Then, the current_step

parameter is evaluated. A value of -1 indicates the user did not grab any object recently; the

Assistant can then trigger the Start Training function or answer contextual questions, but

cannot assist with specific steps (e.g., trigger "Show Video") and will prompt the user to grab

an object. Finally, if current_step is a valid instruction number, the wrong_object_flag

parameter becomes relevant. If this flag is true, the assistant avoids providing help for that

step, instead advising the user to tackle a different step first. The figure below shows a scheme

representing ARTA behavior based on users’ requests and those combinations of parameters.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 111

Figure 93. Scheme showing ARTA behaviour based on the user requests (Questions in green
and Commands in red) and the other parameters

Training Assistant Avatar- Voxy:

The Training Assistant has a virtual presence in the scene through a 3D avatar called Voxy. A

name plus an avatar makes the virtual assistant recognizable, enhancing perceived social

presence, even if the avatar is not in a human form, but it is just a textured sphere which

bounces to give the impression of being "alive". Studies suggest not giving human-like

appearance can avoid the risk of falling into the uncanny valley, that instead can happen for

embodied agents. Because of the afore mentioned aspects, users start interacting with the

agent often, and they feel secure when they ask for assistance. Below are a bunch of images

showing examples of the Training assistant supporting the user with its functionalities.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 112

 Figure 94. Examples of responses to user’s questions

Figure 95. DA’s response to user’s request for help through video and hint

4.3.2.3 User Interface Implementation

This section describes the user interface (UI) solutions implemented in the training application.

Hand Interactions: The system uses MRTK2's input system to allow grabbing and moving

virtual objects. Objects are highlighted in yellow at their target location and the grabbed objects

are shown in green. When released, objects either attach (snap) to the destination or return

to their original position after the timer runs out if dropped incorrectly.

Object Tooltips: Every training object has an associated tooltip displayed on a panel. When

an object is grabbed, its tooltip appears on the panel, showing the associated instruction from

the manual. This helps the user understand what the object is and the required action for the

step.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 113

Figure 96. Example of object tooltip

The training assistant use case is characterized by the use of voice interactions with an AI

assistant named Voxy. For the visual feedback regarding the voice interaction, a display panel

is present on the table showing the text for all the voice inputs and outputs. It displays system

messages (e.g., starting training), transcribed user requests, answers from the assistant,

tutorials and alerts (e.g., inactivity or misplaced objects). It acts as a central visual

communication tool.

Figure 97. The display panel with visual feedback

Speech Input: A wake word, "Hey Voxy", is used to activate the assistant. After saying the

wake phrase, the system records a fixed-duration audio clip which is transcribed and sent to

the assistant. Speech recognition only works within this controlled timeframe. The recorded

speech is then interpreted either as a question or command. When the user calls “Hey Voxy”,

a voice user interface icon pops up on the screen. The icon is a mic and when activated with

“Hey Voxy” command, it turns green in order to give the user the feedback that the application

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 114

is listening. The Voxy avatar also turns green as a positive feedback. When the input is being

processed, a loading symbol is shown. There are two types of voice inputs. The first being

fixed MRTK commands where VOXReality models are not involved. These are used for UI

interactions. For example, before the training is launched, the MRTK command “setup

training” can be used. During the tutorial, to flip the pages, “Next” or “Back” can be used.

However, once the wake word “Hey Voxy” is used, the voice input goes to the DA through

ASR. This interaction will happen in natural language without keywords.

 Figure 98. The display panel with feedback on action performed by Voxy and the listening

feedback with green mic and green Voxy avatar

Speech Output (Text-to-Speech): Responses from the assistant are not only shown on the

panel but also spoken aloud using Text-to-Speech (TTS). This gives a conversational, human-

like quality to the interaction and enhances social presence.

Tutorial: The application features a voice-guided tutorial to teach users how to interact with

the system. It includes instructions on using the wake word (Hey Voxy), formulating different

types of queries (questions or commands), getting assistance and navigating the system. The

tutorial is designed to ensure users understand how to effectively interact with the voice

assistant from the beginning of the training session. The tutorial involves both speech and

textual inputs. Here are some examples:

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 115

Figure 99. The tutorial with guidance for the user regarding MRTK commands

Figure 100. The tutorial with guidance regarding the cheat sheet

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 116

Figure 101. The tutorial with guidance regarding the application logic

Figure 102. The tutorial with practice sessions on voice interaction

Feedback: The application performs additional actions without the user’s demand. Those

tasks are generally guided by some logics guided by a timer associated with user action. If an

object is grabbed but misplaced or lost, the object will be replaced at its original location. The

user will get a feedback regarding this action with a blue popup panel. The system will also

provide feedback through the popup panel when the user demands an action that cannot be

logically performed by the application.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 117

Figure 103. The blue popup panel giving user feedback regarding the replacement of the

misplaced object

Figure 104. The blue popup panel giving user feedback regarding an action that cannot be

logically performed

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 118

4.3.2.4 Summary of Achieved User Requirements

Table 11. Achievement of User Requirements

 Type Requirements Priority
Final

Status
Reasoning

1 Objective
The goal is to provide a guided
augmented reality (AR)
industrial training scenario.

High YES

2 Setup
The external environment
having a defined location is not
essential.

High YES

3 Setup
Three levels - easy, medium,
and difficult - will be offered.

High YES

4 Setup
A location for demo would be a
standard industrial shop
environment or similar lab setup.

High NO

The AR training
can be done in

any location
which is the

highlight of the
usecase. A

specific location is
not required.

5 Setup

An ideal location for test demo is
an industrial shop or similar
which approximate a canonical
(standard) environment.

Medium NO

The AR training

can be done in

any location

which is the

highlight of the

usecase. A

specific location is

not required.

6 Assessment
The operational language is
English.

High YES

7 Assessment
One user(trainee) at a time will
be in the AR training
environment.

High YES

8 Assessment
At least 3-5 users will be
assessed in total.

High YES

9 Assessment

The assessment metrics may
include time spent doing a
virtual task, number of incorrect
steps, number of times the
virtual agent interceded to help -
etc.

High YES

10 Assessment

The target user is an
experienced worker with some
assembly experience and
knowledge of assembly training.

High YES

11 Assessment

The target user has no prior
knowledge of the specific
industrial assembly task
performed in the use case.

High YES

12 Assessment
The target user may or may not
have much experience with
augmented reality.

Medium YES

13 Assessment

The target user will cover all
possible end-user
demographics, including equal
numbers of genders.

Low YES

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 119

14 Assessment

A round of training and
experiment for the use case
scenarios pilot could take
approximately 1-3 hours.

Medium YES

15 Assessment

The user's assembly training
experience will be evaluated
with an emphasis on the
interaction with the virtual agent

High YES

16 Assessment

The user feedback will be
collected via questionnaires,
survey and/or direct verbal
feedback through structured OR
semi-structured interviews.

High YES

17 Interaction

The AR experience involves the
virtual manipulation of object
components in the training
environment by the user.

High YES

18 Interaction

User interaction is with hands,
without controllers and may also
verbally engage with the virtual
agent.

High YES

19 Interaction

Users should be able to choose
between textual instructions OR
visual cues/highlights for the
training depending on the
training sequence.

High YES

20 Interaction
User can ask (virtual agent /
training assistant) for instruction
to assemble a machine/object.

High YES

21 Interaction
Users should have options to
turn on/off, speed-up or slow-
down the narration.

Low NO

It is possible to
turn off the

narration. The
speed of the
narration has

been fixed and
tested through
user studies.

Adjusting
narration speed
would simply be
an additional UI.
Additionally, the
usecase is trying

to provide a
conversation
assistant with

natural
speech like
behaviour.

22
User
Interface

The interface should provide
color schemes and visual cues
appropriate for the action.

High YES

23
User
Interface

There should be a dashboard for
most common functions, which
users can customize and
personalize for their needs.

Low NO

A 2D dashboard
would make a
less immersive
experience in a

3D environament.

24
User
Interface

Access to help and FAQs should
be available on screen at all
times.

Low YES

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 120

25 Virtual Agent
The training session should be
in both text and/or audio/video
format.

Medium YES

26 Virtual agent

Virtual agents can provide
verbal / textual explanation and
display corresponding visual
contents.

High YES

27 Virtual agent
Virtual agents will be animated
in 3D avatar format.

Medium YES

28 Virtual agent

If/when assistance is required,
virtual agents may direct the
user towards objects that are
necessary for the application or
assembly task.

High YES

29 Virtual agent
There should be on-demand
help during the interaction.

High YES

30 Virtual agent
The help should include hints
and quick tips to guide the users

High YES

31 Virtual agent

The virtual agent should monitor
the user action and aid help
demonstrate the user on how to
assemble a part correctly.

High YES

32 Virtual agent
In case of errors, the virtual
agent should intuitively guide
users towards the solution.

Low NO

As the training is
open ended, there
are no errors that
can be done by
the user. When

the user id stuck,
the agent would
assist with hints

or videos.

33 Virtual agent

Support from a virtual agent may
come in the form of
documentation, such as images
or PDFs, videos.

Medium YES

34 Virtual Agent

The virtual agent should
intervene and offer automatic
help after a certain number of
incorrect steps by users.

High YES

35 Feedback

Users should have both visual /
audible notifications regarding
the correctness of the tasks at
hand.

High YES

36 Feedback
The feedback should appear
automatically in case of incorrect
assembly.

High YES

37 Feedback

Feedback should be as close to
immediate as possible and self-
explanatory when requested or
needed.

High YES

38 Feedback
The training and assembly
should end with results and
feedback.

High YES

 Type Extended Requirements Priority
Final

Status
Priority

39 Performance
Enable microphone input
transmission from HL2 client to
laptop application

High YES

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 121

40 Performance

Extend the available
interactions between the XR
application and the dialogue
agent

High YES

41 Performance

Perform internal technical
testing to gather metrics for
comparison in laboratory
conditions to compare with the
metrics gathered in pilot 2

High YES

42 User Interface
Improve the UI to avoid
overlapping information with the
virtual training scene

High YES

43 User Interface
User's should be provided with
either visual or audible feedback
before agent initiates a task

High YES

44 User Interface
Provide visual/audible indication
when the virtual agent is
listening

Medium YES

45 Virtual Agent
Place virtual agent at a stable,
defined location in the AR
environment

Medium YES

46 Virtual Agent
Virtual Agent initiates help that
is beneficial to the user

Medium YES

Several requirements outlined for the system were successfully implemented; however, a few

were intentionally not addressed, as shown in the tables above. The setup-related

requirements (IDs 4 and 5) were deprioritized because the training is designed to be flexible

and can be effectively conducted in various environments, making a specific industrial setup

unnecessary. Regarding interaction (ID 21), narration speed control was excluded as the

interaction design was optimized with user. Nevertheless, users retain the ability to disable

the dialogue agent through a voice command. Additionally, the proposed customizable

dashboard (ID 23) was omitted, as its 2D interface would detract from the immersive

experience essential to the system. Finally, the virtual agent’s intuitive guidance in case of

errors (ID 32) is not implemented as it is to avoid spoon-feeding. However, the user gets hints

and video suggestions.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 122

5 Conclusions

The work presented in this document is connected to the WP4, whose primary objectives are

to deploy the VOXReality AI models across all use case along with providing comprehensive

documentation on the various deployment methods for these AI models. Additionally, this WP

is responsible for the sharing of those models to third parties. Moreover, it involves the

investigation of the ‘once-for-all’ training scheme and the inference optimization methods. To

this end, activities regarding the implementation of XR applications are conducted in the WP4.

This document presents an overview of the SOTA methods regarding the “once-for-all”

training methods and the AI model optimization techniques. Additionally, it includes some

initial results from the application of VOXReality optimization tool. Subsequently, it presents

the VOXReality model optimization approach that is applied in VOXReality models. Regarding

the deployment of pre-trained models, the document outlines the process for deploying

VOXReality models onto a development server following the CI/CD pipeline, for validation and

testing purposes. Furthermore, it includes guidelines on the deployment of models via source

code and Docker images. The sharing of the model is achieved by Hugging Face. Lastly, it

provides the implementation details of the three VOXReality XR applications: VR Conference,

Augmented Theater and Training Assistant.

Focusing on the results achieved up to the 38rd month, the proposed VOXReality post-training

optimization method generally maintains or even enhances prediction quality while reducing

the inference time. Additionally, the shift to ONNX with graph optimization further reduces

inference time, indicating its effectiveness in streamlining model performance without

significantly compromising output quality. Concerning the deployment methods of VOXReality

models, two methods are currently presented, those are source code-based and container-

based deployment. The container-based deployment involves utilizing Docker images from

Docker Hub as well as employing Docker Compose Comprehensive deployment guidelines

for these methods are provided to assist users. Additionally, Hugging Face host a dedicated

repository where the pre-trained VOXReality models are listed, each accompanied by

documentation in the form of “Model Card”.

The VOXReality models have been already integrated in the three VOXReality applications to

enhance user immersion. The Virtual Reality Conference application has successfully

implemented 40 out of 49 user requirements, including most high and medium-priority ones.

It features virtual avatars with dedicated cartoonish agents for interaction and navigation aids

like a virtual map and visual cues. Additionally, it offers real-time translation in five languages

with customizable subtitles for each speaker, enhancing the immersive experience. The

Augmented Reality Theater application has fulfilled all high and medium priority user

requirements and one low priority, except those related to theatrical elements. The application

can provide personalized subtitles, virtual effects, and background play information. The

Training Assistant application establishing an environment with various difficulty levels,

language support, and interactive elements like object manipulation and feedback. Some

parts, like assessment metrics and instructional options, need completion, but the groundwork

is laid for further development.

Following that, the consortium focuses on planning and execution of Pilot 2, which aims to test

the VOXReality XR application in a real-world environment as well as to gather feedback from

the users. The planning of the pilot is included in the D5.2 “Pilot planning and validation V2”

(due on M33 as well), while the execution details and results analysis will be presented in D5.4

“Pilot analysis & feedback V2” (due on M37). Moreover, we will continue to work on “once-for-

all” training concept and model optimization techniques. Our goal is to provide a tool that

facilitates the once-for-all training method and to expand the CLI tool for inference

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 123

optimization. That has as goal to decrease the model size and processing demands, ensuring

efficient and effective use of AI models during the deployment to various hardware

environments, including those with limited resources. The deployment methods and their

accompanying guidelines are expanded to provide more options. The XR application will be

finalized considering both the user and technical requirements as well as the received

feedback from Pilot 2.

30 JUNE 2025 MODEL DEPLOYMENT ANALYSIS V2/ 124

6 References

[1] H. Cai, C. Gan, T. Wang, Z. Zhang and S. Han, “Once-for-all: Train one network and

specialize it for efficient deployment,” arXiv preprint arXiv:1908.09791, 2019.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and

I. Polosukhin, “Attention is all you need,” Advances in neural information processing

systems, vol. 30, 2017.

[3] W. Kwon, S. Kim, M. W. Mahoney, J. Hassoun, K. Keutzer and A. Gholami, “A fast

post-training pruning framework for transformers,” Advances in Neural Information

Processing Systems, vol. 35, pp. 24101-24116, 2022.

[4] S. Yu, T. Chen, J. Shen, H. Yuan, J. Tan, S. Yang, J. Liu and Z. Wang, “Unified visual

transformer compression,” arXiv preprint arXiv:2203.08243, 2022.

[5] X. Wu, Z. Yao, M. Zhang, C. Li and Y. He, “XTC: Extreme Compression for Pre-trained

Transformers Made Simple and Efficient,” Advances in Neural Information Processing

Systems, vol. 35, pp. 3217-3231, 2022.

[6] J. Zhang, H. Peng, K. Wu, M. Liu, B. Xiao, J. Fu and L. Yuan, “Minivit: Compressing

vision transformers with weight multiplexing,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp. 12145-12154.

[7] P. Ganesh, Y. Chen, X. Lou, M. A. Khan, Y. Yang, H. Sajjad, P. Nakov, D. Chen and

M. Winslett, “Compressing large-scale transformer-based models: A case study on

bert,” Transactions of the Association for Computational Linguistics, vol. 9, pp. 1061-

1080, 2021.

[8] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen and Q. Liu, “Dynabert: Dynamic bert

with adaptive width and depth,” Advances in Neural Information Processing Systems,

vol. 33, pp. 9782-9793, 2020.

[9] O. Zafrir, A. Larey, G. Boudoukh, H. Shen and M. Wasserblat, “Prune once for all:

Sparse pre-trained language models,” arXiv preprint arXiv:2111.05754, 2022.

[10] M. Chen, H. Peng, J. Fu and H. Ling, “Autoformer: Searching transformers for visual

recognition,” in Proceedings of the IEEE/CVF international conference on computer

vision, 2021, pp. 12270-12280.

[11] J. Larson, M. Menickely and S. M. Wild, “Derivative-free optimization methods.,” Acta

Numerica, vol. 28, pp. 287-404, 2019.

[12] Z. Yuan, Y. Shang, Y. Song, Wu., Y. Yan and G. Sun, “Asvd: Activation-aware singular

value decomposition for compressing large language models. arXiv preprint arXiv,” vol.

2313.05821, 2023.

[13] X. Wang, Y. Zheng, Z. Wan and M. Zhang, “Svd-llm: Truncation-aware singular value

decomposition for large language model compression,” p. 2403.07378, 2024.

[14] X. Wang, S. Alam, Z. Wan, H. Shen and M. Zhang, “SVD-LLM V2: Optimizing Singular

Value Truncation for Large Language Model Compression.,” arXiv preprint arXiv:, p.

2503.12340..

[15] Y. C. Hsu, T. Hua, S. Chang, Q. Lou, Y. Shen and H. Jin, “Language model

compression with weighted low-rank factorization.,” vol. arXiv preprint arXiv, p.

2207.00112, 2022.

[16] VOXReality, “D3.1 - Advanced AI multi-modal for XR analyis V1,” 2023.

[17] VOXReality, “D2.3 - Development infrastructure and integration guidelines,” 2023.

[18] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

mathematik, vol. 1, pp. 87-290, 1959.

30 JUNE 2025 VOICE DRIVEN INTERACTION IN XR SPACES VOICE DRIVEN
INTERACTION IN XR SPACES / 125

