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Executive Summary 

The purpose of this document is to present an in-depth analysis and methodology for the 

training, optimization, deployment and sharing of VOXReality AI models, as well as to describe 

the implementation details of the VOXReality eXtended Reality (XR) applications. Specifically, 

the document provides an overview of the state-of-the-art “once-for-all” (OFA) concept, as well 

as various AI model optimization techniques. Additionally, the VOXReality model optimization 

approach is introduced to decrease the model size and computational requirements while 

maintaining performance, ensuring efficient and effective use during the deployment. This tool 

also facilitates the export of AI models into common formats like ONNX. Experimental results 

demonstrating the effectiveness of the VOXReality optimization tool are also presented. 

Furthermore, the document defines the deployment and sharing options for the pretrained 

VOXReality AI models, providing clear guidelines on effective deployment and access, 

including source code-based deployment and containerization strategies. It also includes the 

architecture, design principles, and implementation details of VOXReality's XR applications, 

specifically the VR Conferences, Augmented Theatre, and Training Assistant.  
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1 Introduction  

The rapid growth of Deep Neural Networks (DNN) has led to architectures with hundreds of 

millions of parameters, demonstrating significant challenges in training and inference 

processes. Those challenges are intensifying when the models are deployed in resource-

constrained devices, like edge devices or mobile phones. Specifically, the training phase of 

these AI models demands high computational resources, being particularly time-consuming 

and power intensive. In addition, the inference of these models requires significant computing 

power and can be time-consuming, particularly on devices with limited processing capabilities, 

making inference optimization essential for fast and efficient performance. Transformer 

models fall into this category of computationally intensive architectures, thus requiring a focus 

on training and inference optimization to ensure their efficient and effective use during the 

deployment.  

 

VOXReality implements advanced Natural Language Processing (NLP) models based on 

transformer architecture. Therefore, it is crucial to overcome these computational challenges 

through innovative strategies, ensuring that these AI models are not only powerful but also 

practical for deployment in various hardware environments, including those with limited 

resources. In VOXReality, we address those challenges by exploring the “once-for-all” (OFA) 

training concept, allowing for the efficient creation of sub-networks tailored to specific 

hardware and use cases. Additionally, we implement an optimization tool that employs 

different techniques like pruning and quantization. This tool also facilitates the export of AI 

models into common formats like ONNX, enhancing their adaptability.  

 

Ensuring that AI models are effectively utilized in real-world scenarios is a critical aspect. 

VOXReality addresses this by offering a variety of deployment options to facilitate the easy 

and efficient use of AI models across different platforms, from edge devices to cloud servers.  

The adaptability of these models is further enhanced by VOXReality's comprehensive 

deployment guidelines, which assist integration of AI technologies across various applications. 

Furthermore, the VOXReality AI models are shared on the Hugging Face platform, to promote 

wider adoption and to invite external developers to expand and refine these models, thus 

fostering innovation and broadening the scope of their AI solutions. 

 

The VOXReality AI models have been deployed in three distinct use cases: VR Conference, 

Augmented Theatre, and Training Assistant, showcasing the versatility of these models in XR 

environments and their ability to create immersive experiences. The feasibility of implementing 

these applications will be verified through two rounds of pilot testing under real-world 

conditions, demonstrating their practical application and robustness. The detailed design and 

implementation of these AI models have been meticulously planned to align with both the user 

requirements and technical specifications, guaranteeing that the end solutions are not only 

innovative but also practical and user centric.  

 

The technical work described in this document is performed in all three tasks of (T4.1, T4.2, 

T4.3) of WP4 until the end of the 17th month of VOXReality project. Specifically, Task 4.1 

“Model deployment and serving” focuses on the deployment and sharing options of pretrained 

VOXReality AI models as well as on the deployment of those models in every use case 

scenario. Task 4.2 “Model training & inference optimization” investigates the SOTA methods 

for economic model training following the “once-for-all” training approach as well as the 
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different optimization techniques. Moreover, in this task, tools for “once-for-all” training and 

optimization are implemented by VOXReality consortium. Task 4.3 “Novel Interactive XR 

Applications” is responsible for developing the XR applications utilizing the VOXReality AI 

models in the use cases.   

1.1 Intended Audience  

The intended audience for this deliverable includes the VOXReality project consortium and 

third-party users, consisting of participants in the project's open calls as well as researchers 

and AI & XR professionals interested in exploring VOXReality research outputs. The 

document provides the VOXReality optimization approach that could be utilized by the AI 

engineers to create cost-effective and energy-efficient AI models, making them suitable for a 

wide range of deployment scenarios. Moreover, the provided deployment guidelines can also 

be employed by AI engineers and developers to correctly deploy the AI models across various 

applications. In addition, the implementation details of VOXReality XR applications can 

provide useful information on how technologies can be integrated into various sectors, offering 

practical insights for developers looking to adapt these applications to specialized use cases 

or environments. 

1.2 Relations to the other activities  

The VOXReality optimization tool, the deployment guidelines and the model sharing are 

strongly dependent on the VOXReality AI models. Therefore, this document is intrinsically 

connected with all the tasks of WP3 “Advanced AI muti-model for XR”. Additionally, the model 

deployment is closely correlated with the Task 2.3 “Development Infrastructure”. It should be 

mentioned that many decisions regarding the implementation of XR applications are made 

based on User Requirements and Technical Requirements, extracted from Task 2.1 "User 

Requirements" and Task 2.2 "Technical Requirements" respectively as well as by the pilot 

planning outlined in Task 5.1 “Planning and Validation”. Finally, this document is linked with 

the WP7 “Integration paths” since it offers useful insights into how third-party users from Open 

Calls can utilize the research outputs.  

1.3 Document Structure  

Section 1 provides an introduction of the deliverable’s intended audience as well as an 

overview of its content. Section 2 introduces the SOTA algorithms for the “once-for-all” training 

approach as well the AI model optimization techniques, providing a detailed background 

overview of those topics. Moreover, this section describes the proposed VOXReality two-

stages optimization pipeline that can be applied on the VOXReality AI models. In addition, it 

discusses the experimental results obtained from the application of this method. Section 3 

details the various deployment methods available for utilizing the AI models, along with 

comprehensive deployment guidelines. It also describes the process of model sharing through 

the Hugging Face platform. Section 4 includes all the detailed information about VOXReality 

XR applications, covering the design and the implementation aspects, such as the 

development environment, creation of 3D models and scenes, development and integration 

of core algorithms, the various User Interface (UI) elements, etc. Section 5 outlines the 

conclusions and discusses future work.  
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2 Model Training and Inference Optimization  

In recent years, Deep Neural Networks (DNN) architectures have become extensively large 

with hundreds of millions of parameters. As a consequence, Neural Network (NN) training and 

inference phases have become increasingly challenging procedures. Many optimization 

techniques have been developed over the years to overcome this, while the growing demand 

for deploying neural networks on resource-constrained devices, such as mobile phones and 

edge devices, has further underscored the importance of developing efficient optimization 

techniques. 

 

Neural Networks, in general, require high computational resources due to their complexity 

which typically involves a large number of linear algebra operations with high precision floating-

point variables. The training phase in particular is notoriously time-consuming, often 

demanding several days to converge to an acceptable solution. Even the inference of these 

models can consume significant power, presenting challenges for deployment in energy-

constrained environments, such as edge devices, which have significantly less computational 

power compared to personal computers and servers. Adding to that, mobile devices operate 

mostly on batteries, urging developers to optimise the applications to minimize power 

consumption and extend the battery life. Furthermore, for applications demanding real-time 

responses, such as gaming or communication apps, minimising the execution time becomes 

essential to ensure optimal user experience. Based on all the aforementioned, we are led to 

the conclusion that neural networks need to be run on a variety of heterogeneous hardware, 

each one with different, sometimes unpredictable, constraints. 

 

In VOXReality, we are planning to provide the VOXReality platform with the means to conduct 

economical model training and deployment, by exploring a possible adaptation of the “once-

for-all” (OFA) [1] training concept to the project’s models, enabling the extraction of sub-

networks from a single large one, that are conditioned on the targeted hardware and fine-

tuned on the specific use-case. The VOXReality source models are developed under WP3 

and focus on automatic speech recognition, multilingual translation, vision-language and 

context-aware conversational agents. In addition to the introduction of the OFA adaptation, 

we will also develop and release a Command Line Tool (CLI) that will allow users to further 

optimise networks produced by the project in a more “traditional” manner, by employing a 

series of pruning, quantization, graph optimization and compression operations, additionally 

exporting these models into various commonly used formats like ONNX and TorchServe.  

 

All the models developed for the three use cases (Augmented Theatre, Virtual Conference and 

Training assistant) are Transformer-based [2]. Transformers are computationally, storage and 

memory expensive compared to Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) for a few reasons. Namely, transformers use a mechanism called “Attention”, 

which involves the investigation of the relationships between all input tokens. This can be quite 

demanding computationally, especially as the input sequence gets longer. Transformers 

typically hold a large number of parameters that require extensive memory for storage and 

processing. While transformers are great at understanding long-distance connections in data, 

this comes at the cost of having to access information from all parts of the input sequence, 

which further adds to their computational and memory requirements. Overall, while 

transformers are very powerful for specific tasks, they come with their own set of constraints 
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and disadvantages compared to CNNs and RNNs, deriving mainly from their higher 

computational and memory needs. 

 

VOXReality’s AI models are intended to be deployable in various environments: a) on edge 

devices (e.g. HDM or mobile phone - may require heavy quantization and compression), b) on 

small computers (e.g. PC or laptop - may require optimizations for SIMD CPU), c) on cloud 

servers (e.g. Microsoft Azure virtual machine - may require CUDA GPU optimizations) and d) 

on controlled specialised infrastructure may require the use of framework-specific packages 

(e.g. a specific game-engine). 

 

In Figure 1, we can see the intended life cycle of a VOXReality model. It begins as a large-

scale generic source model trained with the OFA principal that is afterwards fine-tuned on 

additional data, hardware-optimised and exported into a different format, targeted for a specific 

use-case. Core of this scheme is the possibility to adapt and utilise the same generic source 

model in a multitude of downstream tasks. 

 
Figure 1:The intended life cycle of a VOXReality model. 

2.1 Overview of State-of-the-Art Methods 

There is a variety of transformers’ optimization techniques and frameworks currently under 

development, signalling further the perceived importance of the field. One such framework is 

developed under A fast Post-Training Pruning Framework for Transformers [3] which 

eliminates the need for retraining, aiming to reduce model size and inference latency. The 

framework operates by taking a pre-trained Transformer model, a sample dataset and a 

FLOPs/latency constraint as input (Figure 2) and outputs a pruned model that meets the 

specified resource constraints. By employing a three-stage decomposition process involving a 

Fisher-based mask search algorithm, mask rearrangement and mask tuning, the framework 

identifies and prunes redundant components while preserving model accuracy. This retraining-

free approach enables quick and efficient model compression, leading to significant reductions 

in FLOPs and inference latency, without compromising performance, making it a practical 

solution for optimising Transformer models. 
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Figure 2: Conventional pruning framework VS Proposed pruning framework [3]. 

 

Another approach is the Unified Visual Transformers Compression [4] which presents a unified 

framework for compressing Vision Transformers, combining pruning, layer skipping, and 

knowledge distillation (Figure 3) techniques to optimise model performance under 

computational constraints. Pruning selectively removes redundant weights, layer skipping 

adjusts computation patterns across blocks and knowledge distillation transfers essential 

information from a larger model to a compressed one. By jointly optimising model weights, 

pruning ratios, and skip configurations under specific constraints, Unified Visual Transformers 

Compression (UVC) achieves efficient model compression while maintaining performance on 

vision tasks. 

 

 
Figure 3: The compression scheme of Unified Visual Transformers Compression. 

 

An example of extreme compression is XTC: Extreme Compression for Pre-trained 

Transformers Made Simple and Efficient [5] which focuses on ultra-low bit precision 

quantization to compress large pre-trained transformer models for efficient deployment on 

resource-constrained devices. By combining lightweight layer reduction methods, 1-bit 

quantization with deep knowledge distillation and data augmentation, longer training budgets, 

and careful hyperparameter tuning, XTC achieves state-of-the-art results in extreme 

compression, surpassing previous methods in both compression ratio and model performance. 

The study systematically evaluates the impact of key hyperparameters and training strategies 

on extreme compression, highlighting the importance of simplicity and efficiency in the 

compression pipeline. Overall, the research presents a simple yet effective method for extreme 

compression of pre-trained transformers, demonstrating superior performance and 

compression rates compared to existing approaches.  

 

Another work is MiniVIT: Compressing Vision Transformers with Weight Multiplexing [6] that 

introduces a novel compression framework, MiniViT, for Vision Transformers. MiniViT 

combines weight sharing, transformation, and distillation techniques (Figure 4) to reduce the 
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number of parameters in Vision Transformer models while maintaining or even improving 

performance compared to the original models. By multiplexing weights of consecutive 

transformer blocks and applying weight distillation over self-attention, MiniViT effectively 

reduces model size without significant loss in accuracy. The framework demonstrates its 

efficacy through experiments showing substantial parameter reduction in pre-trained models 

like Swin-B and DeiT-B, with performance improvements on tasks such as ImageNet 

classification. 

 
Figure 4: The compression scheme of MiniViT. 

 

Lastly, Compressing Large-Scale Transformer-Based Models: A Case Study on BERT [7] 

focuses on compressing large-scale Transformer-based models, specifically BERT, to make 

them more suitable for low-capability devices and applications with strict latency requirements. 

By exploring various compression techniques such as quantization, pruning, and knowledge 

distillation, the document aims to help researchers and practitioners create lightweight yet 

accurate models for Natural Language Processing tasks. The insights provided clarify how 

these compression methods impact model size, performance, and efficiency, offering valuable 

guidance for optimising Transformer models for real-world applications. 

 

2.1.1 Once-for-All Concept  

The Once-for-All (OFA) network training technique introduces a novel approach to deploy 

neural networks across various devices with different resource constraints efficiently. Unlike 

traditional methods that require training specialised networks for each scenario, OFA 

decouples the training and sub-network search processes, enabling the quick selection of 

specialised sub-networks without additional training (Figure 5). This innovative methodology 

not only improves accuracy and efficiency on a wide variety of devices but also reduces 

computational costs and CO2 emissions significantly. By leveraging the OFA training scheme, 

users can achieve high performance while minimising the time and efficiently use the 

resources needed for model optimization and deployment. 
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Figure 5: Train the network once and quickly extracts the appropriate sub-network for each 

different hardware setup. 

 

Initially, the idea of OFA was conceived for Convolutional Neural Networks [8]. The process, 

in its core, is highly non-trivial since it requires the joint optimization of weights belonging to 

potentially different sub-networks, in such a structured way to maintain the accuracy of all of 

them simultaneously. It is computationally prohibitive to enumerate all sub-networks to get the 

exact gradient in each update step, while randomly sampling a few sub-networks in each step 

can lead to significant error drops. The challenge is that the different sub-networks are implicitly 

interfering with each other, making the training process and convergence of the whole once-

for-all network complicated, at the very least. 

 

The main idea of OFA in CNNs is the progressive shrinking algorithm (Figure 6). Progressive 

shrinking works by enforcing training order from large sub-networks to small sub-networks in 

a progressive manner within the Once-for-All (OFA) network. This training scheme aims to 

prevent interference between sub-networks by starting with training the largest neural network 

with maximum dimensions (e.g., kernel size, depth, width) and then progressively fine-tuning 

the network to support smaller sub-networks that share weights with the larger ones. By 

following this approach, progressive shrinking provides better weight initialization by selecting 

crucial weights from larger sub-networks and allows for the distillation of smaller sub-networks, 

thereby enhancing the training efficiency of the OFA network. 

 

 
Figure 6: Illustration of the progressive shrinking process for CCNs to support different depth, 

width, kernel size, and resolution. 

 

After training the Once-for-All (OFA) network, the process of selecting a specific sub-network 

for a particular hardware device involves utilising a predictor-guided architecture search. This 

search method leverages accuracy and latency predictors trained on a subset of sub-networks 

to guide the selection of an architecture that meets the requirements of the target hardware 

device. By using the predictors to estimate the performance of different sub-networks in terms 
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of accuracy and latency, the architecture search can efficiently identify the most suitable sub-

network that balances accuracy and computational efficiency for the given hardware 

constraints. This approach enables the OFA network to be specialised for diverse hardware 

devices by selecting the optimal sub-network that best aligns with the device's capabilities and 

operational needs. Bringing this concept closer to VOXReality needs, essentially equates to 

decomposing and adapting the aforementioned processes to transformers. 

 

A work that explores similar mechanisms for transformers is DynaBERT [9] which adapts to 

diverse architectural configurations by dynamically adjusting depth (network layers) and width 

(the dimensionality of the hidden layers) dimensions. Initially, it trains a width-adaptive BERT 

model able to flexibly adjust its width to suit specific tasks and hardware limitations. 

Subsequently, DynaBERT extends this adaptability to encompass both width and depth 

dimensions, allowing for fine-grained optimization of model size and latency. Through 

sophisticated techniques such as knowledge distillation and network rewiring, DynaBERT 

distills crucial insights from the full-sized model into smaller sub-networks while preserving 

essential features. The aforementioned scheme empowers superior performance across 

various efficiency constraints, positioning it as a versatile and potent solution for deploying 

efficient language models in real-world applications. Figure 7 shows the two-stage procedure 

to train with DynaBERT. First, it uses knowledge distillation to transfer knowledge from a frozen 

teacher network to a student sub-network with adaptive width (DynaBERTw). Then, using 

knowledge distillation it transfers knowledge from DynaBERTw to multiple student sub-

networks with adaptive both width and depth (DynaBERT). 

 

 
Figure 7: The two-stage procedure to train with DynaBert. 

 

A different work is Prune Once For All [ [10] (Figure 8). By leveraging weight pruning and model 

distillation techniques, the Prune OFA method inherently creates sparse pre-trained models 

with specific sparsity patterns. These sparse models can be considered as sub-networks of 

the original dense model, where certain connections or parameters have been pruned based 

on the defined sparsity ratio. These sub-networks retain the essential information required for 

efficient processing and can be utilised for inference tasks, reducing computational costs and 

memory requirements while maintaining high performance. The ability to extract sub-networks 

from the Prune OFA method adds flexibility and scalability to the deployment of sparse pre-

trained language models in various applications. 
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Figure 8: The Prune OFA training scheme. 

 

Finally, the work we deem having the greatest potential for use in the VOXReality project is 

Autoformer [11], since it showcases the largest number of changeable/tunable parameters and 

is shown to work for vision transformers (ViT). The key changeable parameters in AutoFormer 

include depth, K-Q-V dimensions, embedding dimension, attention’s number of heads and 

Multilayer Perceptron (MLP) ratio, which significantly impact model performance (Figure 9). By 

allowing all these parameters to be adjusted during training, AutoFormer enables the 

exploration of vastly diverse transformer structures, adapted to specific requirements. 

 

 
Figure 9: Detailed transformer block in an AutoFormer structure with all changeable 

parameters. 

 

The training procedure of AutoFormer involves creating a super-network with adjustable 

changeable dimensions (Table 1) and for each epoch selecting a subset of this network for 

training. During training, only the weights specific to the chosen subset are updated while the 

remaining weights stay constant, a practice defined as “weight entanglement” (Figure 10). This 

process is repeated for each epoch until training is complete. By following this iterative 

approach, the sub-networks within the super-network are effectively trained, enabling efficient 

weight inheritance and the development of high-performance transformer models. 
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Table 1: The values of the changeable dimensions, where tuples in parentheses represent the 
lowest value, the highest value, and step of each tuneable parameter, respectively. 

 
 

 
Figure 10: Classical weight sharing (left) vs. Weight entanglement of AutoFormer (right). 

 

After training the super-network, an evolutionary search process is employed to select a 

specific sub-network with the desired number of parameters. This involves evaluating the 

performance of different sub-network architectures within the trained super-network and 

choosing the model that achieves the highest accuracy while meeting the specified 

parameters constraints. By conducting evolutionary optimization utilising typical selection, 

crossover and mutation operations, the search algorithm iteratively refines the selection of 

sub-networks based on their performance and parameter sizes. Through this iterative process, 

an optimal enough sub-network with the desired number of parameters and accuracy arises, 

ensuring a balance between model complexity and performance. 

 

2.1.2 Standard AI Model Optimization Techniques 

Traditional optimization techniques, such as quantization, pruning, graph optimization and 

entropy compression are long employed to enhance the efficiency and performance of deep 

learning models. At a glance, quantization refers to the reduction of the variables’ and 

operations’ arithmetic precision, reducing the memory requirements and computational 

complexity of the network. Pruning and graph optimization remove unnecessary connections 

and parameters from the model, and entropy compression compresses the remaining 

elements of the network achieving the smallest possible lossless representation of the model. 

Subsequently, we will delve into the various optimization components. 
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Quantization 

Quantization can be applied at different stages of the model development process, such as: 

 

Post-training quantization: This is the simplest and most widely used method, where 

quantization is applied after the model has been trained with floating-point data. This method 

does not require any re-training or fine-tuning, but it may introduce some accuracy loss due to 

the reduced precision. Post-training quantization can be further divided into static and dynamic 

quantization, depending on whether the activations are quantized during inference or not. 

 

Quantization-aware training (QAT): This is a more advanced method where quantization is 

simulated during the training process, and the model parameters are pre-emptively adjusted 

in a way to minimize the post-training quantization error. This method can preserve the 

accuracy of the original model, but it requires more computational resources and time due to 

provisions. QAT can also be further divided into fake and real quantization, depending on 

whether the quantization is actually performed during training or not. 

 

Hybrid quantization: This is a hybrid method, where quantization is applied only to some parts 

of the model during training, such as the weights or the gradients. This method can reduce the 

memory and computational costs of training while maintaining good accuracy. 

 

Pruning 

Pruning is a technique that reduces the size and complexity of neural networks by removing 

some of their components, such as weights, neurons or layers. Pruning can help improve the 

efficiency and speed of Transformer models, which are widely used for natural language 

processing and other tasks. There are different types of pruning techniques for Transformers, 

such as: 

 

Unstructured pruning: This technique removes individual weights from the model based on 

some criteria, such as magnitude or importance. Unstructured pruning can achieve high 

compression rates, but it requires sparse matrix operations which are not well supported by 

most hardware. 

 

Structured pruning: This technique removes groups of weights that have a regular structure, 

such as attention heads, filters or layers. Structured pruning can preserve the original matrix 

operations, which are more efficient and compatible with most hardware. 

 

Graph Optimization 

Graph optimization involves refining structurally the network's architecture to enhance 

efficiency without sacrificing performance. Think of it as reorganising a cluttered workspace to 

improve productivity. By identifying and streamlining redundant pathways and operations, the 

optimization process reduces computational overhead and memory usage. This results in 

faster processing times and more efficient resource utilisation. Ultimately, graph optimization 

ensures that the neural network operates more smoothly and effectively, akin to a well-

organised workspace facilitating better workflow and in most cases is platform dependent (e.g. 

ONNX). 
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Entropy compression 

Entropy compression refers to the widely and generically used entropy-coding based lossless 

compression techniques found in various zip/tar-like products. It can always be used as the 

last stage packing for storing and transferring data, and thus can be implemented to reduce 

the non-working (offline storage) memory of a model. It is implicitly already present in various 

common model representation formats like PyTorch’s “pt” and “pth”. 

2.2 VOXReality Model Optimization Approach  

Our plan is to create a two-stage optimization pipeline that can be applied on the VOXReality 

models either independently or in succession, resulting in ever greater efficiency gains. The 

second stage will be applicable to the majority of the VOXReality provided models (namely 

Optimization Methodology I) while the first stage of our pipeline (namely Optimization 

Methodology II) will be applicable only to some of the Vision-Language models to be provided, 

since it requires them to be built and trained in a special way.  

 

2.2.1 Optimization Methodology I  

For the second stage of our pipeline that will be applicable to the majority of the VOXReality 

models, we deem to arrange sequentially all the standard optimization elements described in 

section 2.1.2. As an additional step, we chose to utilise and export the widely used ONNX 

framework for cross-platform model deployment. Subsequently, we present the specific order 

of the operations (Figure 11) and analyse them in detail. 

 

 
Figure 11: The proposed model optimization pipeline. 

 

Steps #1 and #6, namely “model loading” and “exporting” respectively, are omitted from the 

following analysis for being trivial. 

 

Step #2 Pruning 

We are currently working on applying some form of unstructured post-training pruning in the 

pipeline (to be presented under the D4.2), similar to the one described in [3]. 
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Step #3 ONNX Conversion 

ONNX (Open Neural Network Exchange) serves as an open standard for representing 

machine learning models through a unified set of operators that define various model 

architectures. Major frameworks like PyTorch, TensorFlow, etc. support exporting and 

importing models in the ONNX format, facilitating seamless model migration across different 

platforms. We deem to use ONNX format as an intermediate representation inside our pipeline 

for its convenience and compatibility with various plug-and-play solutions for graph 

optimization, quantization and exporting. To convert our models to ONNX format, we utilise 

the Optimum library. 

 

Step #4 Graph Optimization 

The process of converting our model to ONNX introduces a range of new tools for further 

optimization. Optimising the ONNX graph involves various underlying techniques, with the 

most prominent being the Node Fusion. Node Fusion entails consolidating multiple nodes 

within the graph into a single node wherever feasible, thereby reducing the overall complexity 

of the graph. 

 

Step#5 Quantization 

As we previously mentioned, downcasting involves transitioning the precision of its weights, 

typically from 32-bit (FP32) to 16-bit floating point (FP16) or alternatively to 8-bit, or 4-bit, 

integer representation formats. This adjustment yields several effects on the model itself. 

Firstly, by storing numbers in a format that requires fewer bits, the model naturally decreases 

in size. Since the model was initially trained with 32-bit precision, the shifting of operations to 

fewer bits can have detrimental effects on the model’s accuracy. Nevertheless, in our 

experiments we showcased that if it is done carefully, the negative effects quantization bears 

can be contained to a minimal. The results of our experiments, regarding both inference time 

and inference memory consumption are presented in Chapter 4. 

 

At the end of the pipeline, the optimised model is being converted, if necessary, and exported 

into the preferred representation format, either be ONNX, the standard PyTorch or the 

TorchServe format. 

2.2.1.1 Experimental Results  

In the following paragraph, we will present the results of a preliminary study regarding the 
application of Optimization Methodology I on a pre-trained version of the VL ViT-GPT2 model 
for image captioning. The testbed comprises a Windows PC powered by an Intel i7 CPU with 
32GB of RAM and an Nvidia GeForce RTX 3060 GPU with 12GB of VRAM. The study was 
conducted on a 1000-image subset of the COCO 2014 evaluation dataset and regards two 
axes: inference time and prediction quality under five widely used evaluation metrics; BLEU, 
ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-Lsum. All those metrics are detailed described 
in D3.1 “Advanced AI multi-model for XR analysis” [12]. 

 

The initial reference model to be passed through the optimization pipeline is in native PyTorch 
format, with its parameters represented in 32-bit Floating Point (FP) precision. The other 
representations tested were PyTorch in 16-bit FP, 8-bit integer and 4-bit integer, and after 
conversion to ONNX format in 32-bit FP with and without graph optimization applied. Note 
that, not all these representations work for both CPU and GPU, so we split the study in two 
parts, evaluating separately only the applicable ones in each scenario. Table 2 presents the 
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inference time and evaluation scores of the model running on GPU while the Table 3 illustrates 
those results when the model running on CPU.  

 
As it was expected, the model inference processing time and prediction quality seem 
correlated, as a general trend, with the details presented below. Nevertheless, at least for our 
tested data, post-training optimization with the exception of the extreme 4-bit quantization 
scheme does not seem to significantly hurt the quality of the model’s predictions, in some 
cases even enhancing the model’s generalisation ability. In the immediate future, we plan to 
conduct a similar study on an NLP multi-language translation model, extending our knowledge 
on the pipeline’s total behaviour and the individual representations’ nuances. 

 
Table 2: Inference time and evaluation scores of ViT-GPT2 captioning model running on GPU. 

Model (Arithmetic 
precision) 

Inference 
Time 

BLEU 
Rouge-

1 
Rouge-

2 
Rouge-

L 
Rouge-
LSUM 

PyTorch 
(FP32) 

168 ms 0.048 0.298 0.098 0.273 0.273 

PyTorch (FP16) 127 ms 0.044 0.304 0.098 0.279 0.279 

ONNX (FP32) 108 ms 0.048 0.298 0.098 0.273 0.273 

ONNX Graph 
Optimization (FP16) 

95 ms 0.045 0.293 0.084 0.266 0.266 

 

 

Table 3: Inference time and evaluation scores of ViT-GPT2 captioning model running on CPU. 

Model (Arithmetic 
precision) 

Inference 
Time 

BLEU 
Rouge-

1 
Rouge-

2 
Rouge-

L 
Rouge-
LSUM 

PyTorch (FP32) 539 ms 0.045 0.308 0.095 0.280 0.280 

PyTorch (INT8) 318 ms 0.044 0.303 0.092 0.278 0.280 

PyTorch (INT4) 173 ms 0.022 0.294 0.083 0.264 0.264 

ONNX (FP32) 384 ms 0.048 0.298 0.098 0.273 0.273 

ONNX Graph 
Optimization (FP32) 

311 ms 0.048 0.298 0.098 0.273 0.273 

 

2.2.2 Optimization Methodology II 

For the first stage of our envisioned optimization pipeline that will be applied only on some of 

the Vision-Language models to be provided, we plan to develop our own variant of AutoFormer 

and then extend it novelly to the decoder part of the architecture. The primary challenge of this 

approach thus, is the distinction between training a ViT-GPT2 (our intention) and a ViT-only 

(reference) architecture. Unlike ViT (Figure 12a) which comprises encoder-only blocks, the 

ViT-GPT2 combination (Figure 12b) features both encoder and decoder blocks with the 

encoder inherited from the ViT and the decoder from the GPT-2 architectures. The reference 

work of AutoFormer is dealing only with the vision transformer encoder case, and thus novel 

work is needed to go forward. 
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(a) 

 
(b) 

Figure 12: A ViT architecture encoder block (a) vs. a ViT-GPT2 encoder-decoder one (b). 

 

After training and fine-tuning the source model in the AutoFormer manner, it will be possible 

to also feed it to the second stage of our pipeline to further increase its efficiency and explore 

the rest of the deployment options. 
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3 Model Deployment and Sharing  

AI model deployment and sharing play a crucial role in ensuring that high-quality, robust ML 

and AI innovations are effectively translated into practical, real-world applications. First, 

deploying AI models on a development server is a critical phase to rigorously validate and test 

the various services. Moreover, the deployment processes involve the integration of these 

models into existing systems and workflows, enabling seamless operation in different 

environments under different conditions. On the other hand, model sharing refers to the 

processes of distributing the model itself, facilitating its wider use and development by others.  

 

VOXReality utilizes NLP and CV advancements to develop robust AI models, aiming to 

address the challenges of human-to-human and human-to-machine interaction in XR 

environments. Detailed information on the development of VOXReality AI models can be 

found in D3.1 “Advanced AI multi-modal for XR analysis V1” [12]. The VOXReality trained AI 

models and the developed AI tools are automatically deployed in development server for 

further validation and testing from the consortium members. The deployment procedure is 

automated through GitLab’s CI/CD pipeline, which has been configured by VOXReality to 

enable the automation of integration and deployment procedures. The pipeline utilizes GitLab 

CI/CD platform's runners to execute these operations efficiently. A detailed description of 

VOXReality CI/CD pipelines is provided in D2.3 “Development Infrastructure and Integration 

Guidelines” [13].  

 

Moreover, the trained models have been already deployed across three distinct use cases: 

VR Conference, Augmented Theatre and Training Assistant. A detailed description of the 

VOXReality application's implementation for each use case is provided in Section 4. Beyond 

these initial applications, the models can also be utilized by external application developers 

for a variety of tasks. To facilitate this adaptability, comprehensive deployment guidelines are 

provided outlining various deployment options. Additionally, all developed VOXReality AI 

models are made publicly available for sharing on the Hugging Face platform.  

 

It is important to highlight that all research outputs of the project are publicly available, 

supporting the commitment of VOXReality to open science. This ensures that stakeholders 

can access and utilize these outputs. Specifically, the research outputs of the VOXReality 

project can be accessed through various repositories, which are listed here: 

1.   

 
VOXReality GitLab, containing inference code and AI tools. 
https://gitlab.com/groups/horizon-europe-voxreality  
 

2.  

VOXReality DockerHub, hosting docker images that encapsulate the operating 
environment, the AI models and the code required to utilize the model effectively. 
https://hub.docker.com/u/voxreality  

3.  

 
VOXReality HuggingFace, listing various VOXReality AI models available for 
use. 
https://huggingface.co/voxreality  
 

 

These research outputs can be used in various combinations by end users to leverage the 

VOXReality assets in their applications: 

https://gitlab.com/groups/horizon-europe-voxreality
https://hub.docker.com/u/voxreality
https://huggingface.co/voxreality
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1. Using GitLab Source Code to Create RESTful Services. Users can employ the 

source code from VOXReality GitLab. It is recommended to create a Conda 

environment including the requirements of each service. The VOXReality pretrained 

models are obtained from Hugging Face. The source code from VOXReality is 

designed to employ RESTful architecture, enabling the creation of services that 

expose one or more endpoints. These endpoints facilitate efficient interaction with the 

service, following standard communication practices between computer systems. In 

VOXReality, FastAPI is used for building APIs with python.  

2. Direct Use of Docker Images. Users can directly use the Docker image from 

VOXReality Docker Hub or Docker Compose from VOXReality GitLab. The images 

include the operating environment and the corresponding VOXReality pretrained 

model, which is automatically retrieved from VOXReality Hugging Face. 

3. Download Hugging Face models. Users can download and fine-tune the VOXReality 

pretrained models from Hugging Face for specific tasks. Subsequently, they can use 

the source code from GitLab to build services that expose one or more endpoints, 

following the RESTful architecture. Alternatively, users can also build a Docker Image 

using this approach. 

3.1 Deployment of VOXReality AI Models in Development Server  

The deployment for VOXReality in the development server is a critical part of the development 

process. This stage enables the AI engineers to validate, test and refine the AI models within 

controlled, real-world scenarios, providing invaluable feedback that is essential for further 

enhancements. These activities can be characterized as laboratory tests and are carried out 

by the consortium members, with the aim of ensuring that all the components work together 

effectively. Detailed information and characteristics of VOXReality development environment 

are presented in D2.3 “Development Infrastructure and Integration Guidelines” [13].  

 

Automatic deployment to the development server is essential of the development workflow 

followed by VOXReality, facilitated by the robust CI/CD pipeline. This automated system 

ensures that every code commit triggers a series of events, starting with the integration of new 

software features into the module’s functionality. Code changes are committed to a dedicated 

development branch in GitLab, triggering the CI/CD pipeline that executes any preconfigured 

unit tests. Successful tests lead to code merging into the main branch, while failures prompt 

necessary revisions. The CD phase then automates packaging and prepares the software for 

deployment, resulting in Docker images that are pushed to VOXReality DockerHub and then 

deployed to the development server for validation and testing. The CI/CD pipeline can be 

further enhanced towards security processes by applying SAST.  

 

GitLab CI/CD can deploy jobs to build Docker images and publish them to a container registry. 

The basic steps to enable GitLab CI/CD on a VOXReality GitLab project and a sample pipeline 

template are described below. 
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Dockerfile 

The first step includes the creation of the Docker file in the root of the repository. An example 

of Dockerfile is presented in Figure 13. 

 
FROM tiangolo/uvicorn-gunicorn-fastapi:python3.9 
 

RUN apt-get update && \ 

      apt-get -y install sudo 
 

RUN sudo apt install nano 
 

COPY ./app/requirements.txt /app/requirements.txt 
 

RUN pip install -r requirements.txt 
 

COPY ./app/main.py /app/main.py 

COPY ./app/openapi.json /app/openapi.json 

COPY ./app/model /app/model 
 

CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"] 

 
Figure 13: Example of Dockerfile. 

 

GitLab CI/CD Pipeline 

The CI/CD pipeline is defined by the .gitlab-ci.yam configuration file, which specifies the 

stages and jobs that make up the CI/CD pipeline. The file is also created in the root of the 

repository. The GitLab Static Application Security Testing (SAST) can be enabled by 

navigating to Secure > Security Configuration, to analyse our source code for known 

vulnerabilities.  

 

In addition to the predefined Group Variables (DOCKER_USER, DOCKER_PASSWORD, 

etc), the DOCKER_IMAGE repository variable is specified by navigating to Settings > CI/CD 

> Variables in the repository. A new variable can be added as it is depicted in Figure 14. All 

the repository variables are visualized in Figure 15. 

 
Figure 14: GitLab CI/CD Add variable. 
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Figure 15: GitLab CI/CD Repository Variables. 

Template .gitlab-ci.yaml file 

In the provided .gitlab-ci.yml template file (Figure 16), the only necessary modification is to 

adjust the final command in the deploy stage to suit the specific application-model. This last 

command is responsible for running the application as a Docker container: 

 
docker run -d -p 8080:80 –name $CI_PROJECT_NAME $DOCKER_IMAGE:$CI_COMMIT_TAG 

 

The container name is the variable $CI_PROJECT_NAME, which is the project’s name as 

shown in the URL. 
stages: 

- build 

- test 

- deploy 

 

include: 

- template: Security/SAST.gitlab-ci.yml 

 

build: 

  services: 

  - docker:dind 

  stage: build 

  before_script: 

  - echo "$DOCKER_PASSWORD" | docker login --username "$DOCKER_USER" --password-stdin 

  script: 

  - | 

    if [[ "$CI_COMMIT_BRANCH" == "$CI_DEFAULT_BRANCH" ]]; then 

      tag="" 

      echo "Running on default branch '$CI_DEFAULT_BRANCH': tag = 'latest'" 

    else 

      tag=":$CI_COMMIT_REF_SLUG" 

      echo "Running on branch '$CI_COMMIT_BRANCH': tag = $tag" 

    fi 

  - docker build --pull -t "$DOCKER_IMAGE${tag}" . 

  - docker push "$DOCKER_IMAGE${tag}" 

  rules: 

  - if: "$CI_COMMIT_BRANCH" 
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    exists: 

    - Dockerfile 

 

build-tags: 

  stage: build 

  before_script: 

  - echo "$DOCKER_PASSWORD" | docker login --username "$DOCKER_USER" --password-stdin 

  script: 

  - docker build --pull -t "$DOCKER_IMAGE:$CI_COMMIT_TAG" -t "$DOCKER_IMAGE:latest" 

    . 

  - docker push "$DOCKER_IMAGE:$CI_COMMIT_TAG" 

  - docker push "$DOCKER_IMAGE:latest" 

  only: 

  - tags 

 

sast: 

  stage: test 

 

unit-test: 

  image: alpine:3.18.0 

  stage: test 

  script: 

  - echo "Running unit tests... This will take about 10 seconds." 

  - sleep 10 

  - echo "Tests passed succesfully" 

 

lint-test: 

  image: alpine:3.18.0 

  stage: test 

  script: 

  - echo "Linting code... This will take about 5 seconds." 

  - sleep 5 

  - echo "No lint issues found." 

 

deploy: 

  image: alpine:3.18.0 

  stage: deploy 

  script: 

  - chmod og= $SSH_PRIVATE_KEY 

  - apk update && apk add openssh-client 

  - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no 

$SSH_USER@$SSH_SERVER_IP "docker login -u $DOCKER_USER -p $DOCKER_PASSWORD" 

  - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no 

$SSH_USER@$SSH_SERVER_IP "docker pull $DOCKER_IMAGE:$CI_COMMIT_TAG" 

  - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no 

$SSH_USER@$SSH_SERVER_IP "docker container rm -f $CI_PROJECT_NAME || true" 

  - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no 

$SSH_USER@$SSH_SERVER_IP "docker run -d -p 8080:80 –name $CI_PROJECT_NAME 

$DOCKER_IMAGE:$CI_COMMIT_TAG" 

  only: 

  - tags 

Figure 16: Template of .gitlab-ci.yaml file 

 

Trigger GitLab CI/CD  

The GitLab CI/CD is triggered in the following cases: 

• When pushes to main, the first two stages are triggered as shown in Figure 17. The two 

phases are the build and test. The build job also pushes the $DOCKER_IMAGE to 

DockeHub with a tag latest. 
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Figure 17: GitLab CI/CD Pipeline when push to main. 

 

• When creates or pushes a tag, all stages are triggered, including build, test and deploy. 

A new tag is created by navigating to code > tag > new tag, as it is illustrated in Figure 

18. The build-tags job also pushes the $DOCKER_IMAGE to DockerHub with tags latest 

and $CI_COMMIT_TAG, which is the commit tag name (e.g., v0.0.1). It is recommended 

using only Semantic Versioning. The deploy job connects to deployment server, pull the 

docker image with the specified tag and run the docker run command to start the container. 

It also removes the previous version of the container if exists. All the triggered jobs are 

displayed in Figure 19.  

 

 
Figure 18: GitLab CI/CD Create a new tag. 
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Figure 19: GitLab CI/CD Pipeline when create a new tag.  

 

Summary of steps for automated deployment in development server  

The above-described procedures for automatic deployment in VOXReality development 

server can be summarized here:  

1. Dockerfile Creation. A Dockerfile is created in the root of the repository to define the 

environment in which the application will run. 

2. CI/CD Configuration. A .gitlab-ci.yaml file is also placed in the root of the 

repository. This configuration file defines how the GitLab Runner executes the CI/CD 

jobs, orchestrating the build and the deployment process.  

3. Security Measures (Optionally). Enable the Static Application Security Testing 

(SAST) to analyze the code for known vulnerabilities. 

4. Repository Variables. A repository variable named $DOCKER_IMAGE is specified 

under Settings > CI/CD > Variables, which is used in the pipeline to refer to the Docker 

Image.  

5. CI/CD Pipeline Execution. GitLab CI/CD pipeline is triggered by either pushing to the 

main branch or creating or pushing a new tag: 

a. Push to main. The build and test jobs are triggered. After a successful build, 

the Docker image, denoted as $DOCKER_IMAGE, is pushed to DockerHub 

with the 'latest' tag. 

b. Create or push a tag. When a new tag is created or pushed the build, test and 

deploy jobs are triggered. This is achieved by code> tag > new tag. The Docker 

image is then built and sent to DockerHub. Following this, the corresponding 

container starts running on the development server. 

 

3.2 Deployment Guidelines  

In the VOXReality project, a widely adopted and standardized software architectural style for 

communication between computer systems is following, which is the RESTful architecture as 

it is described in VOXReality Integration Guidelines of D2.3 “Development Infrastructure and 

Integration Guidelines” [13]. Specifically, FastAPI1, a modern, fast web framework for building 

APIs in Python, is employed. In this approach, each service exposes one or more endpoints 

to which clients can send requests. These endpoints are essentially URLs through which the 

services are accessible. The endpoints serve as the interface for the service, allowing clients 

to interact with it using HTTP methods. Therefore, the deployment of VOXReality AI models 

 
1 https://fastapi.tiangolo.com/  

https://fastapi.tiangolo.com/
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is effectively managed through the creation of FastAPI applications. Details about the API calls 

of each service are provided in Appendices of D3.1 “Advanced AI multi-model for XR Analysis” 

[12]. Additionally, to enhance scalability, these applications can be containerized using Docker. 

 

The VOXReality AI models can be deployed in various hardware environments following 

different deployment methods. This section provides general guidelines that are applicable to 

most of those models. However, considering the unique deployment requirements and 

potential modifications for each AI model, it is advisable to also refer to the individual GitLab 

pages of each model for more specific and targeted guidelines. On these individual GitLab 

pages, one can find deployment instructions for all deployment methods. It should be noted 

that all the following deployment methods create RESTful Services.  

 

The deployment options that are described here include: 

1. Deployment from Source Code 

2. Containerization 

a. Using single images from Docker Hub  

b. Using Docker Compose 

3.2.1 Source code-Based Deployment 

All the VOXReality code, including the inference code and AI tools, is publicly available in the 

GitLab group: https://gitlab.com/groups/horizon-europe-voxreality. The main thematic entities 

developed in the VOXReality project are organized as subgroups within this main group. 

Additionally, each subgroup may contain several projects, with each project providing a 

specific service as well as detailed documentation in the form of README files. The steps to 

set up and run the VOXReality models by utilizing the source code from GitLab repository are 

described in this section. By following these steps, the VOXReality AI models are utilized, and 

the local API is up and running for further development and testing, however it is important to 

select the appropriate subgroup and project that meets someone specific requirements.  

 

Moreover, those guidelines describe the general steps for utilizing the source code from 

VOXReality GitLab repository accompanied either with the corresponding VOXReality AI 

model in Hugging Face repository or with a locally stored model. The locally saved model can 

be one that has been directly downloaded from VOXReality Hugging Face repository or that 

has been finetuned.  

 

 

1. Clone the Repository. Start by cloning the project repository from GitLab using the 

command: 

git clone https://gitlab.com/horizon-europe-voxreality/subgroup/project.git 
 

2. Create a Conda Environment. If you have not already, create a new Conda 

environment with Python 3.8 by running: 

conda create --name env_name python=3.8  
 

3. Activate the Environment. Activate the created Conda environment with: 

conda activate env_name  
 

https://gitlab.com/groups/horizon-europe-voxreality
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
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4. Install Dependencies. Navigate to the project directory and install the required 

dependencies using pip: 

cd project  
pip install -r requirements.txt  

 

5. Navigate to Application Directory. Change into the application's directory: 

cd /app  
 

6. Configure AI Model Storage Path. Set the path where the AI model is stored by 

editing the config.yaml file. This path should point out to the relevant AI model 

within the VOXReality Hugging Face repository, or to a local version of the AI model 

that has been either directly downloaded from Hugging Face or further fine-tuned 

locally.  

• To do this manually, open the config.yaml file in text editor and modify 

‘PRETRAINED_MODEL_NAME_OR_PATH’ with the correct path. 

• Alternative, update the config.yaml file via the terminal.  

 

7. Launch the API Locally. Start the local server with the Uvicorn command that points 

to your application. 

uvicorn main:app --host 0.0.0.0 --port 8000 --reload  
 

The above command starts the Uvicorn server hosting the application defined as “main:app”. 

  

3.2.2 Container-Based Deployment 

The VOXReality CI/CD pipeline is configured to automatically build and upload Docker images 

to the VOXReality DockerHub: https://hub.docker.com/u/voxreality. These images are readily 

available for end users to deploy within their applications, as well as for further development 

and testing, encapsulating both the operating environments and the AI models. The currently 

available VOXReality docker images are presented in Figure 20.  

 

This section provides a description of two containerization strategies for deploying VOXReality 

AI models, which are:  

1. Using single images for VOXReality Docker Hub repo. This approach regards the 

deployment of AI models using pre-built, standalone Docker images available on 

Docker Hub. Each image runs as a separate container. This approach is ideal for 

directl deployments where a single container can fulfil the requirements.  

2. Using Docker Compose. This method is essential when the applications require a 

more complex environment, involving multiple interdependent services. It allows to 

define and manage the multi-container scheme with ease, offering a more integrated 

deployment process. Additionally, with this method the multiple containers are 

orchestrated to work together.   

 

 

https://hub.docker.com/u/voxreality
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Figure 20: VOXReality DockeHub. 

 

3.2.2.1 Deployment using Docker Hub Images 

When deploying, the Docker images are pulled and run as containers in the target 

environment. This containerization guarantees uniform operation of VOXReality AI models in 

any environment, effectively abstracting away any discrepancies in underlying hardware or 

software. 

 

Depending on the intended hardware, different Docker commands are used to deploy 

VOXReality models, tailored specifically for CPU or GPU environments. However, it is 

recommended to deploy the VOXReality AI models on GPU for optimal performance. 

 

For deployments using a CPU, the Docker command is as follows: 
docker run -p 8000:8000 <name_of_image> 
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For deployments intended to utilize GPU, the command is slightly modified to enable GPU 

access: 

docker run --gpus all -p 8000:8000 <name_of_image> 
 

The --gpus all flag assigns all available GPUs to the container, which is necessary for 

models that require or significantly benefit from GPU acceleration.  

 

In both cases, <name_of_image> should be replaced with the actual name of the Docker 

image that contains the VOXReality model to be deployed. These commands ensure that the 

VOXReality models are deployed in a Docker container with the appropriate hardware access 

for optimal performance. 

3.2.2.2 Deployment using Docker Compose  

Docker Compose is a tool for defining and running multi-container Docker applications. With 

Docker Compose, a YAML file, typically named docker-compose.yml is used to configure 

the application’s services, networks and volumes. This file serves as a template for Docker to 

understand how to run and interconnect the various containers that make up the application. 

Figure 21 displays an example of the docker-compose.yml file that combines the NMT, the 

ASR, and the conference agent.  

 
version: "3.9" 

 

services: 

  conference_agent: 

    image: voxreality/conference_agent:v1 

    ports: 

      - "8000:8000" 

    env_file: ".env" 

    volumes:  

      - pdfs/:/app/pdfs:ro 

    deploy: 

      resources: 

        reservations: 

          devices: 

            - driver: nvidia 

              count: all 

              capabilities: [gpu] 

    restart: unless-stopped 

  umlib: 

    image: voxreality/draft_asr:v1 

    ports: 

      - "5033:5033" 

    deploy: 

      resources: 

        reservations: 

          devices: 

              - driver: nvidia 

                count: all 

                capabilities: [ gpu ] 

    restart: unless-stopped 

Figure 21: Example of docker-compose.yml file 

 

The docker-compose.yml files of VOXReality are configured to use Docker Images hosted 

in the VOXReality Docker Hub repositories. Meanwhile, the various docker-compose.yml 

files are maintained and can be founded in the VOXReality GitLab repo.  
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To run the Docker Compose in background, the following command can be used: 

docker-compose up -d 

  

To run a specific service defined in a docker-compose.yml file, the ‘docker-compose 

up’ command is followed by the name of the service that it is desired to start: 

docker-compose up -d [service_name] 

 

In this case, it is important to remember that the service names used in the above command 

should match exactly as it is defined in the docker-compose.yml file.  

 

3.3 Model Sharing  

Hugging Face is a central platform in the AI community for sharing AI models, particularly 

those related to NLP. It provides a central hub where developers and researchers can upload 

their pre-trained models, making them accessible to the wider community. The platform 

supports a collaborative environment, allowing users to contribute to the development and 

improvement of models in various applications. Hugging Face allows for seamless integration 

of models into various projects through its comprehensive library of 'transformers'.  This library 

supports the download and use of these models for NLP applications as well as the fine-

tuning. Sharing AI models through this platform offers numerous benefits, including increased 

visibility, community feedback and the potential for collaborative improvements. Specifically, 

sharing through the Hugging Face ensures that cutting-edge models are readily available for 

use and further development. This approach not only enhances the models but also 

contributes to the advancement of the field. 

 

The trained VOXReality AI models, after undergoing extensive testing and validation, are 

uploaded to the VOXReality Hugging Face Community by AI Engineers. Figure 22 illustrates 

the VOXReality Hugging Face repository. This dedicated repository on Hugging Face allows 

researchers to easily discover and utilize VOXReality AI models, leveraging the 

comprehensive documentation provided for each model to enhance their research and 

applications. 
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Figure 22: VOXReality Hugging Face repository.  

Each uploaded VOXReality model is accompanied by detailed documentation that covers 

various aspects such as the model’s architecture, training data, performance benchmarks, 

and intended use cases. Additionally, this documentation often includes examples and 

tutorials to help users better understand and utilize the models effectively. The documentation 

for each model is provided in a "Model Card," which are files that accompany the models, 

offering a comprehensive overview and guidance for users. Moreover, the “Model Card” 

includes metadata, providing essential information such as the model’s name, version, 

language, and license. The metadata acts as an informative summary, supporting easy 

navigation, AI model discovery and easier use of each model. It greatly simplifies the process 

for users to search for and filter models based on specific criteria like language, model type, 

or application domain, ensuring a more efficient and user-friendly experience. 

 

The following guidelines aims to provide clear instructions on how to access VOXReality AI 

models form Hugging Face repository, enabling efficient integration of those models into 

various applications.  

1. Create a Hugging Face Account (Optional). While this is not necessary, creating an 

account on the Hugging Face can provide access to additional features.  

2. Select the Desired Model. In the VOXReality Hugging Face repository, select the 

model that fits your need.  

3.  Access the model. There are 2 ways to access the pre-trained AI models in Hugging 

Face VOXReality repository.  

a. Using Git to download the AI model. 

Since all models on the Hugging Face are Git repositories, the desired model 

can be cloned locally by running:  
git clone clone https://huggingface.co/voxreality/<model_name> 

b. Using Transformers Library  

i. Set up the Environment. If you have not done already, create a Conda 

environment and install the needed libraries. This can be done, following the 

next steps: 

1. Create a Conda Environment. If you have not already, create a new 

Conda environment with Python 3.8 by running: 
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conda create --name env_name python=3.8  

2. Activate the Environment. Activate the created Conda environment with: 

conda activate env_name  

3. Install the Hugging Face “transformer” library. This can be done by 

running.  

 

4. Load the model directly. You can directly use the model in your python 

script using the following command. The specific commands for each 

model are generally provided by Hugging Face under the “Use in 

Transformers” section:  
from transformers import AutoTokenizer, AutoModelForCausalLM 

 

tokenizer= AutoTokenizer.from_pretrained("voxreality/model_name") 

model=AutoModelForCausalLM.from_pretrained("voxreality/model_name”) 

 

 

  

pip install transformers 
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4 VOXReality XR Applications 

The pre-trained VOXReality AI models have been deployed in three different use cases: VR 

Conference, Augmented Theater and Training Assistant. Table 4 presents the VOXReality 

components integrated into each use case.  

 

Table 4: VOXReality components used in each use case. 

Components 

Use Case 

Automatic 
Speech 

Recognition 

Neural Machine 
Translation 

Vision 
Language 

Models 

Dialogue 
System 

VR Conference X X X X 

Augmented Theatres X X X  

Training Assistant  X   X 

 

This section details the design and implementation of the VOXReality applications, covering 

both conceptual and practical aspects implemented by M17. Any updates and changes will be 

documented in the deliverable D4.2 “Model deployment analysis V2”. Specifically, this section 

includes the creation of 3D models and scenes for each XR application, as well as the 

workflow of the applications. Additionally, this section discusses the necessary tools, software, 

and hardware required for building these applications, along with the key algorithms and 

programming techniques implemented in each solution. It also provides insights into the user 

interface design. Finally, the section concludes with a brief description of how the user and 

technical requirements have been met, while the detailed description will be provided in 

deliverables of WP2 and WP5.  

4.1 VR Conference  

The VR Conference application emulates most recognisable attributes of a real-life 

professional conference setting. The experience is enhanced by a real-time multilingual 

translation service between users and the introduction of a dedicated, voice driven Virtual 

Agent. The Agent intends to help users during their navigation to the conference by providing 

navigation instructions through the virtual space, answering to questions about the 

conference’s program, giving relevant info about the booths that exist in the conference area 

and by giving a description about the virtual scene. The presence of the Virtual Agent is meant 

to be non-intrusive to the users, who can choose to deactivate it and reactivate it at any time. 

4.1.1 System Architecture and Design 

4.1.1.1 3D Models and Scenes Design 

From a spatial perspective, the application should simulate a real venue in a 3D world, 

incorporating all essential rooms required for hosting a conference. It has been decided that, 

among all available areas a conference venue may include, five of them will be designed: 

 

1. The Lobby Room, working as the entrance to the main area of the venue. 

2. The Trade Shows Area, being the main space of the conference, where exhibitor’s 

booths will be placed and access to all other rooms would be possible through it. 

3. The Business Room, for one-to-one communication between participants. 

4. The Social Area, for 1-to-1 communication, and 

5. The Conference Room, where the conference session will take place, facilitating 1-

to-many communication. 



 

 
 
 

 
 
 

01 MARCH 2024  DEPLOYMENT ANALYSIS V1/ 42 
 

 

To increase performance and decrease loading time, each area will be a separate 3D scene 

and interconnection between scenes will be implemented through doors moving between 

them. 

 

So far, 3 out of 5 spaces (3D scenes) have been designed and developed: the Lobby Room, 

the Trade Shows Area, and the Conference Room. The architectural design of the rooms 

aligns with the intended usage of every space and their functionalities. Rooms that serve a 

specific purpose include less spatial information to limit the level of distraction while multi-

purpose spaces, such as the Trade Shows Area, have bigger dimensions and have increased 

complexity. Permitted communication type of each room will be promoted by the design in 

several ways: one-to-one communication can be highlighted with the existence of tables and 

chairs, and one-to-many can be introduced through an amphitheatrical allocation or the 

existence of a stage.  

 

All 3D models integrated into the application have been created following the same principles. 

Their size is minimized as much as possible, by reducing the complexity of geometry and 

lowering the quality of textures, to control loading delays. The acceptable level of this 

optimization process is actively constrained by how realistic the final output would look like. 

For this to be feasible, a low-polygon aesthetic has been selected, adopting a simpler, more 

light-weighted overall style that promotes less complex geometrical shapes. 

4.1.1.2 Application Workflow Diagram  

The application core functionalities introduced to the users can be separated into two main 

categories. The first category incorporates the communication system between the user and 

their Virtual Agent, and the second one describes the pipeline needed for the real-time 

translation system.  

 

Virtual Agent Functionalities 

The Virtual Agent, being represented by a virtual avatar, is a non-intrusive entity, thus, a 

conversation with it is initialized only by the user. The starting point of the communication is 

enabling the Virtual Agent by pressing the corresponding toggle. The instantiated Virtual Agent 

entity will greet the participant with a welcoming message, in their language and will follow 

them during their browsing in the VR space. The workflow is illustrated in Figure 23. 
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Figure 23: Workflow for communication with the Virtual Agent. 

 

The user can ask a question via a push-to-talk mechanism, that records their voice while the 

Agent is active and prevents the microphone output from being networked to other 

participants. This way the conversation with the Virtual Agent remains private. Finishing a 

voice message triggers the first part of the workflow, that formats the microphone output to a 

WAV file and sends it to the Translate Audio endpoint, which combines the ASR (Automatic 

Speech Recognition) and the NML (Neural Machine Translation), along with the user’s 

language and the translation’s desired language, that is always English at this point of the 

workflow, as parameters. The response of this endpoint contains both the transcription and 

the English translation of the voice message. In case of an English-speaking user, both the 

transcription and the translation contain the same information.  

 

The English text Is next propagated to the intent endpoint of the dialog agent that is 

responsible to analyze it, retrieve its context and return relative information. This component 

works as a router for the system, enabling the appropriate workflow depending on the 

requested task. The user can ask the Agent about five different topics:  

1. Navigation  

2. Conference Program 

3. Booth Details 

4. Scene Description 

5. General  
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Each topic follows a different pipeline to generate the needed knowledge, whenever it is 

necessary, and serve it to the dialogue agent endpoint. In Figure 23, shapes with purple fill 

indicate the existence of a dedicated pipeline before the dialogue system while those with 

purple outline represent a simple propagation of the user query to the next component of the 

diagram. The response of the endpoint, being a human language English text, depending on 

the selected language of the user, may require to be inferenced to the text translation endpoint 

in order to be transformed into the correct language. The final text output is sent to the virtual 

agent and gets rendered on a text panel.  

 

Navigation  

When the application is launched, the navigation system (Figure 24) retrieves information 

about the 3D scene like its dimensions, the destination names and positions, possible 

anomalies of the 3D space, connecting points etc. Once this piece of information is gathered, 

the application creates a symmetrical node graph that maps the geometry of the space based 

on Graph Theory and is ready to receive request for navigation. 

 

If the intent endpoint determines that the user is requesting navigation instructions, it extracts 

the desired destination name from the translated text and activates the navigation system to 

handle the request. Simultaneously, the system calculates the closest node to the user’s 

position, and the destination node from the destination name. The Dijkstra algorithm receives 

those as arguments and calculates the shortest path from the starting to the destination node, 

resulting in a list containing all intermediate nodes in a sensitive order.  To change this list to 

an accepted format for the dialogue agent, the system computes continuous movement parts 

of the navigation and the orientation of the turns and propagates them to a module that 

transforms received data to the appropriate format. The line and turn calculator output is also 

needed to create and export correct graphic cues (Figure 25) to the 3D scene such as arrows 

and lines. The color palette of the graphic cues contains vivid shades – green lines and blue 

arrows – and is selected in such a way that the cues can be easily distinguished from the rest 

of the environment. 
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Figure 24: Workflow of the Navigation System. 

 

 
Figure 25: Graphic Cues of the Navigation System. 

 

Booth Description 

Information about the owner of each booth inside the trade shows area is retrieved as meta 

data when entering this room and gets associated with the respective 3D objects inside the 

VR scene (Figure 26). If the intent endpoint detects that the user requests additional 

information about a booth in the tradeshow area, the booth management system is activated. 

The request is sent to the system to determine which booth in the trade shows area is the 

request's target. Once this is specified, the metadata of the 3D objects get collected and 

reshaped in an accepted format by the dialog agent. 
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Figure 26: Workflow of the Booth Description System. 

Scene Description & Remaining Functionality 

User queries for scene description, call the screenshot module that takes a photo of the FOV 

(Field of View) of the participant and sends it to the VL Model for inference (Figure 27). The 

response of the VL Model is directly propagated to the Dialogue System. 

 

 
Figure 27: Workflow of the Scene Description System 

 

The remaining functionalities, i.e. answering about the conference program and respond to 

general questions do not need a specific input from the application (Figure 28). In this case, 

the dialogue system is completely responsible for handling the request and the application 

simply redirects the user query and user intention directly to its endpoint for inference.  
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Figure 28: Workflow of the Conference Program and General Questioning System. 

 

Real-time Translation 

The real-time translation system is not managed by the virtual agent entity. In spaces that 

allow communication between participants, when the virtual agent is not enabled the 

translation system is activated in stand-by mode (Figure 29). 

 
Figure 29: Workflow of the real-time Translation System. 
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If a user wishes to start receiving a translation from another participant, he/she must choose 

him/her as its desired target. When a user target is selected, the translation system checks 

whether both communicating parties have selected their speaking language. Only when all 

those conditions are met does the system start the actual translation, otherwise it remains in 

stand-by mode.  

 

To achieve translation in real time, the networked microphone output of the target user gets 

recorded by the recording module and simultaneously analyzed by a silence detector. If the 

detector recognizes noise from the microphone, the recording starts, and when it detects a 

period of silence, the translation stops and the audio file gets translated using the Audio 

Translation endpoint, having as parameters the speaking language of the source and the 

target user. The response of the endpoint gets rendered directly in the 3D scene, on a panel 

at the front of the target user.  

 

The system also listens for any events that may need to change some of its inference 

parameters such as, removing source and/or target language or changing their values. In case 

of absence of one or more parameters, the system remains in standby mode until they change 

to an acceptable value again. 

 

The source user can always deactivate the translation or change target and the system will 

automatically reset.  

4.1.2 Implementation Details 

4.1.2.1 Development Environment Setup 

The VR Conference application is being developed based on Hubs2, an open-source web 

application for interacting in networked 3D spaces, powered by Mozilla. For the development 

process, the Community Edition of Mozilla Hubs is hosted, on a Kubernetes Cluster that 

automatically manages all the necessary projects of the application, using Google Kubernetes 

Engine3 running in a 2x2vCPU machine with 4GB of RAM.  In parallel, minor changes to the 

application are made directly using the Development Server of Mozilla, to avoid deployment 

latency. 

 

The VR conference, being a web application, is accessible via every web browser that 

supports WebGL. The virtual reality mode of the application additionally requires a VR 

Headset and a web browser supporting WebXR. Almost all modern VR Headset of the industry 

are compatible with the application and in case of a standalone model, a computer is not 

required, as access can be granted directly from the headset’s browser or by streaming the 

application from the computer to the headsets. For development purposes Meta Quest 24 and 

Meta Quest 35 are being used so due to compatibility reasons streaming the application to the 

headsets requires a MS Windows OS client computer. 

 

 
2 https://hubs.mozilla.com/  
3 https://cloud.google.com/kubernetes-engine  
4 https://www.meta.com/quest/products/quest-2/  
5 https://www.meta.com/quest/quest-3/  

https://hubs.mozilla.com/
https://cloud.google.com/kubernetes-engine
https://www.meta.com/quest/products/quest-2/
https://www.meta.com/quest/quest-3/
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The server side of the application, named Reticulum, is written in the Phoenix framework of 

the Elixir programming language. Reticulum is responsible for networking all information 

except communication media such as the microphone and camera feedback. Those get 

managed by a separate Node.js webRTC server based on the open source MediaSoup 

project, called Dialog. Another worth mentioning project, that is part of the application, is 

Spoke, a lightweighted scene editor written also in JavaScript. 

 

All additional features implemented in Mozilla Hubs are part of modifying and extending the 

Hubs client code. The client project is a mixture of JavaScript and TypeScript languages, that 

manages both 3D objects and UI elements. The User Interface is written in the React.js 

framework while the 3D scene is being developed by a combination of the THREE.js library 

and the Networked A-FRAME framework, that works as wrapper for THREE.js elements. All 

physics in the 3D world is being computed by the ammo.js library.  

 

4.1.2.2 3D Models and Scene Creation  

Designing the virtual environment of the application is conducted mostly using Blender, an 

open-source 3D creation suite, to sculpt the geometry and customize the shading of 3D 

objects. Creating scenes that represent different rooms of the virtual conference benefited 

from the Archimesh extension, an architectural Blender tool, which allows for simple, 

geometrically light-weighted room designs (Figure 30). Decorative elements of the space 

including objects required for the room, such as the booths of the trade show area are either 

free licensed 3D models, imported to the project from the internet or are created specifically 

for the VR conference application.  

 

 
Figure 30: Blender Interface for room designing. 

 

Shading elements that don’t have materials is done using free licensed texture files from the 

internet to create new ones and assign them to the models (Figure 31). However, the textures 

must be of medium to low quality to avoid decreased performance on runtime. 
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Figure 31: Blender Interface for shading. 

 

Once a space is completed, in terms of design and shading, the models are exported as a 

single file using Blender’s GLTF/ GLB exporter since GLB is the only acceptable format by 

Hubs for 3D model importing. Final editing stages happen in Spoke thought which the 3D 

model is imported inside a new scene and then lighting sources (Figure 32), Hubs custom 

components such as connection gates with other already finished rooms and spawn points 

are added to it and the scene gets published. 

 

 
Figure 32: Mozilla’s Spoke Interface. 

 

When a participant enters inside a room of the application, a random published scene is 

loaded on their device. Since the scene of each room is configurable, publishing a finished 

scene enables the association of it with a specific room. With this process, three different VR 
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conference rooms have been created associated respectively with the Lobby Room, the Trade 

Show Area, and the Conference Room scene. 

 

4.1.2.3 Core Algorithms and Techniques  

Dijkstra Algorithm 

The Virtual Agent assigned to each user of the application should provide efficient instructions 

for navigation when requested, both in textual and graphic format. The process of calculating 

the shortest path from a starting to a destination point is done by implementing the Dijkstra 

algorithm [14], which is a shortest path finding algorithm based on weighted graphs. 

 

For the Dijkstra algorithm to function properly, when a user enters a scene and the application 

retrieves the properties of the room, a node grid is constructed on the fly to map the VR space. 

The grid's density is a configurable value that also gets retrieved with the fetched room 

properties. Extra nodes, such as available destination points of the navigation system and 

hardcoded areas are appended to the node grid.  

 

To progress from a node grid to a weighted graph, specific rules to determine adjacency are 

applied to each node. The rules define the maximum distance between neighboring nodes, 

forbid diagonal edges and set the weight of each edge as the Manhattan distance between 

the connected nodes. The Manhattan distance of two points represents the sum of the 

absolute differences of their Cartesian coordinates. 

 

Once the graph is calculated, the system is ready to accept navigation requests. To process 

the user query, Dijkstra algorithm assigns a tentative distance value to every node. The 

starting node is set to 0, and all other nodes are set to infinity. A priority queue is used to keep 

track of the nodes with their tentative distances, prioritizing the node with the smallest one. 

While there are unexplored nodes, the node with the smallest tentative distance is selected 

from the priority queue and the tentative distances of all its neighbors through the current node 

are calculated, get compared with the current assigned value, and updated if the new distance 

is smaller. Once a node has been explored and its neighbors are updated, it is marked as 

visited to avoid redundant calculations. This process is repeated until the destination node is 

reached. The algorithm's output contains the list of nodes from the source to the destination, 

constructed by following the predecessor’s link from the destination node back to the source. 

 

Silence Detector 

The silence detector component participates in real-time translation functionality of the 

application when one to one communication is conducted. The purpose of this component in 

this workflow is to function as an event emitter, to inform the system when recordings should 

start and stop. This way the application ensures that neither redundant information will be sent 

for translation nor meaningful audio will be lost during the process.  

 

To function properly, the silence detector needs to be configured with an amplitude threshold 

value below which the analyzed sound would be considered as silent and a time interval to 

determine the loop frequency. Through testing and validation, the silence threshold was set 

to 0.6 seconds and the loop time interval to 20 milliseconds On initialization the given audio 

stream is connected to an audio analyzer. At regular intervals, determined by the configuration 
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parameters, the audio data obtains the amplitude of the audio signal and calculates the 

average value. If the average value falls below the given threshold, the system considers that 

this is a silent interval. Consecutive silent intervals are tracked and if the accumulated time 

exceeds a specified duration, the system marks the overall state as silent. If the amplitude is 

above the threshold, the silent interval counter is reset, and the system returns to a non-silent 

state. 

 

Every time a state change occurs, this change is propagated to the Audio Recorder as a signal 

to either start recording or stop and inference the audio. 

 

Entity Component System  

The software architecture of the application is based on an entity component system. Entity-

Component-System (ECS) is an architectural pattern commonly used in game development 

to organize and manage the complexity of entities, their behavior, and their interactions. It's 

designed to improve modularity, reusability, and performance of the application.  

The application’s ECS architecture consists of three main components. 

 

1. Entity: A general-purpose object in the 3D world. It doesn't have any inherent behavior 

or data associated with it. Instead, it serves as a container for components. Entities 

are represented as a unique number in the application. A basic example of an entity in 

the VR Conference is the Virtual Agent of the user. 

2. Component: A modular, reusable piece of functionality or data that can be attached 

to an entity. Components define specific aspects of an entity's behavior or appearance. 

For example, the component “Agent” is attached to the Virtual Agent entity to store 

some references of other entities necessary for the functioning correctly, such as it’s 

text panel. 

3. System: A system is responsible for processing entities that have specific sets of 

components. Systems encapsulate the logic that operates on entities with particular 

component configurations. Each system focuses on a specific aspect of the application 

and operates independently. The Agent System contains all functionality of a virtual 

agent and every entity that has the Agent component attached to it, is processed by 

this system on the main loop of the application. 

4.1.2.4 User Interface Implementation 

The application introduces to the user multiple UI elements both for toggling available 

functionalities and to display output once available. Additional functionality is developed in a 

way that tasks are activated as automatically as possible, to avoid overstimulating the user 

with redundant information. However, when user requirements define that a mechanism 

should not be intrusive, the presence of a UI toggle is cannot be avoided. 

 

User Panel 

The user panel (Figure 33) is the main UI element of the VR conference application. It is a 

system bar that appears at the top of the user’s POV (Point-of-View) whenever they move 

their head upwards and it functions as a control center, containing multiple toggle buttons 

together with some extra options not related to the scope of the application. From the user 

panel, it is possible to enable/disable the presence of the Virtual Agent in the 3D environment, 

the Map component, and the Language Panel, the functionalities of which are discussed 

below. When one of the above components is active in the virtual environment, the respective 
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toggle is highlighted with a blue ring, to indicate its status. Additionally, when a functionality is 

not available for a specific room the saturation of its toggle is lowered to state that this option 

is not provided. Extra indicating methods about the application status are implemented for the 

language selection. When users select their desired language, the corresponding toggle 

changes its appearance to inform them about their active selection by using language codes 

(IT, ES, EL, NL, DE, EN). 

 

 
Figure 33: User Panel element. 

 

Map Component  

If enabled from the user panel, a 3D map component gets renders in the 3D scene, configured 

to change its position and orientation according to the user’s. The Map panel (Figure 34) 

displays the top view of the scene’s room on a smaller scale, along with informative text about 

the room’s objects. To enhance the experience, a system that tracks the user’s position 

relative to the space, maps it to an overlaying red dot on the map to help them orient. This 

tracking system is dynamic, and it gets updated in real time, so that the participants can see 

the impact of their movement on the map. 

 

 
Figure 34: Map Component for the Trade Show Area. 

 

Language Panel 

Behaving in a similar way to the Map component, when selected from the User Panel, a 

Language Panel (Figure 35) that provides buttons for the users to select their language, is 

appended to the 3D scene. The selected language represents both their spoken language 

and the language of the subtitles. Each button of the panel contains an image of a flag to 

express its value and if one of them gets selected, it is highlighted with the same blue ring 



 

 
 
 

 
 
 

01 MARCH 2024  DEPLOYMENT ANALYSIS V1/ 54 
 

effect. The panel closes automatically when a selection happens to make this process less 

complicated and quicker.  

 

 
Figure 35: Language Panel with English language selected. 

 

Behaving in a similar way to the Map component, when selected from the User Panel, a 

Language Panel that provides buttons for the users to select their language, is appended to 

the 3D scene. The selected language represents both their spoken language and the 

language of the subtitles. Each button of the panel contains an image of a flag to express its 

value and if one of them gets selected, it is highlighted with the same blue ring effect. The 

panel closes automatically when a selection happens to make this process less complicated 

and quicker.  

 

Translate Button 

In rooms where the application permits one-to-one communication and translation, every 

participant has a predefined spatial border around them. The system computes the relative 

distance from one participant to all the others in order to detect when someone has crossed 

this border. If this happens, a button in front of every avatar inside this border with the word 

“Translate” appears in the 3D scene (Figure 36). Pressing this button will make it disappear, 

will activate the real time translation system and if all conditions are met, the translation will 

start. While a user is selected, the application continues to calculate the relative position of 

the remaining avatars inside the scene, so the option to change target becomes trivial and not 

time-consuming.  
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Figure 36: Translate Button element. 

 

Translation & Virtual Agent Text Panel 

If a target is chosen and both communicating participants have selected their preferred 

languages, a text panel gets rendered in front of the target in the same position the Translate 

Button was rendered previously. The value of this panel (Figure 37) contains initially a phrase 

in the user’s language, informing them that the translation output will appear on this element. 

If any of the two parties deactivates their languages the translation panel disappears 

automatically, until a new valid change occurs. 

 
Figure 37: Virtual Agent Panel (Left), Translation Panel (Right). 

The same configuration applies to the text panel of the Virtual Agent (Figure 37), but in that 

case the panel stays always visible, until the user disables the presence of the Virtual Agent. 

The information that gets displayed on this panel contains greeting messages, responses of 

the dialogue agent module and potential error messages. 

 

Translate Target Indicator 

When the user chooses a translation target, a small translation button (Figure 38), containing 

the translation symbol, will also appear on top of their head. This button helps the user detect 

their target inside the room and distinguish them from others. This could be particularly helpful 

in cases where many avatars are inside the same room or when the translation panel is not 
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visible due to missing source or target language. When hovering over this button, the symbol 

transforms into an “X” to declare that by pressing it, the selected target option will get cleared. 

 

 
Figure 38: Indicator Button (Left), Hovered Indicator Button (Right). 

 

Loading animation 

The last UI element is a panel of the Virtual Agent to keep the participant updated about their 

request status (Figure 39). While they are phrasing their message to their assigned Agent, 

five dots with a breathing animation appear, indicating that their question is indeed being 

recorded. When the recording stops, while the voice message is being analyzed and until an 

output is sent back to the user, the same dots change to a loading animation, confirming that 

their request has been successfully sent and it is being processed. 

 

 
Figure 39: Loading animation. 

The last UI element is a panel of the Virtual Agent to keep the participant updated about their 

request status. While they are phrasing their message to their assigned Agent, five dots with 

a breathing animation appear, indicating that their question is indeed being recorded. When 

the recording stops, while the voice message is being analyzed and until an output is sent 

back to the user, the same dots change to a loading animation, confirming that their request 

has been successfully sent and it is being processed. 

4.1.2.5 Summary of Achieved User Requirements  

In summary, we have successfully met 25 of the 49 user requirements for the VR Conference 

application, including 19 of the 32 high-priority and 5 of the 10 medium-priority. Users are 
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represented as virtual avatars; each assigned a dedicated virtual agent with a cartoonish 

appearance. These agents not only provide welcome greetings but also interact with users on 

demand. For navigation within the XR environment, a virtual map is available, along with clear 

visual cues such as arrows, guiding users to their destinations. Furthermore, the system 

provides real-time translation in five languages (DE, NL, IT, ES, EL). Those translations are 

available in textual format, and subtitles can be toggled on or off. Each speaker has uniquely 

assigned subtitles, ensuring a seamless and immersive experience.  

4.2 Augmented Theatre  

The Augmented Theatre application is intended to be used in AR-enhanced theatrical play to 

provide the audience with personalized, augmented reality audiovisual and textual content to 

cover accessibility and entertainment needs. According to the gathered user requirements, 

the application should deliver a stream of timely, translated subtitles to the end-user in the 

language of their choice (high priority), a set of virtual effects (VFX) in specific moments of the 

play triggered by verbal cues as determined by the theatrical director (high priority), and lastly, 

additional background information about the play upon user request (low priority) (Figure 40). 

Given the capabilities of the VOXReality services, it has been also examined to incorporate 

an accessibility feature of stage action (scene) description, which is treated as optional 

(“could-have”) in terms of development priorities. 

 
Figure 40: AR Theatre app features, indexed by priority, based on user requirements. 

 

The application should target augmented reality glasses which allow the user to view the 

theatrical stage with an overlay of digital 3D content. Furthermore, the application should 

operate with minimal disturbance in terms of head and hand movement, without voice 

commands and in low light conditions, therefore any input to the application should be made 

using a dedicated controller. For those reasons, the Magic Leap 26 device was chosen.  

 

The application should offer a personalized experience that is in sync with the theatrical play 

happening on stage. Therefore, a server-client system should be implemented to ensure that 

the experience can be centrally controlled, quality assured, and synced across all members 

of the audience. Consequently, to achieve the best possible audio quality, the server should 

be responsible for receiving the audio from the actor’s speech through dedicated 

microphones, generating a transcript using the respective VOXReality model and streaming 

the generated transcription to all clients. Furthermore, the server should be responsible for 

receiving a visual feed of the stage from a dedicated camera, generating a verbal description 

of the scene using the respective VOXReality model and streaming the generated description 

to all clients. In turn, each client should be able to request a translation of the received 

transcription in the user’s preferred language from the respective VOXReality model and 

 
6 https://www.magicleap.com/magic-leap-2  

https://www.magicleap.com/magic-leap-2
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should use the scene description as contextual information for the translation request. Both 

the received transcription and the received scene description should be used in logic running 

on the client to manage the display of VFX and to respond to user requests for background 

information about the play. 

 

Finally, an important factor for the design of the AR Theatre application is the fact that it targets 

mainly non-experienced in augmented reality theatre goers. As a result, it is important to 

design and implement an introduction step that can cover both a familiarization process with 

the overall AR technology and instructions on how to use the application itself. As part of this, 

the introduction and the user customization process are designed to take place before the 

start of the performance and with a staggered approach to accommodate a slow learning 

curve.   

4.2.1 System Architecture and Design 

For the AR Theatre use case, a server-client system with a local Wi-Fi network connection 

was chosen. The server runs on a GPU-enabled Windows laptop and the clients operate on 

Magic Leap 2 devices which run on an Android-based OS. The detailed reasons for the 

selection of the server were 1) to centralize the audiovisual input from the scene (microphone 

and video input) in order to safeguard input media quality, 2) to simultaneously distribute the 

output to the end-user devices in order to assure synchronicity in the audience and 3) to offset 

the demanding computational needs to a more powerful device in order to avoid battery and 

overheating issues on the XR devices. To accommodate these needs, the server receives 

audio and video input from the stage using appropriately placed camera and microphone 

devices with a wired connection for stability and speed. A USB-connected camera with a view 

to the physical stage is attached to the laptop, and currently the microphone on the camera is 

used to receive audio. In future stages, the theatre’s microphone setup will be used instead. 

The server and the clients are connected to the same local Wi-Fi network and communicate 

using a WebSocket protocol for frequent and fast communication. 

 

In addition to the server, the GPU-enabled Windows laptop also runs locally the two required 

models in containers using Docker Desktop (Speech Translation model code found here and 

Vision Language/GPT2 model code found here). Running the models locally is preferred to a 

remote cloud call, because the system can operate with high security standards, isolated -and 

thus stable- network conditions and minimal communication latency, all of which are especially 

important during the theatrical performance. The server code communicates with the models 

running on the same device by making RESTful API calls to the local host which ensures the 

highest possible response speed and contributes to the critical goal of overall low latency in 

the provision of the subtitles. The downside of the co-existence of both the neural network 

models and the WebSocket server on the same hardware device is that this solution has a 

higher risk distribution and computational strain to the device. To mitigate this, an improved 

resilience and recovery strategy is being designed iteratively and is informed by continuous 

testing. Currently, part of the mitigation plan is to separate the WebSocket traffic from the API 

call traffic, to prioritize direct API calls in the clients as much as possible, and to implement 

different fallback plans on the clients in case any of the two endpoints fail to respond (e.g., 

due to an application crash or OS crash). Design choices informed by this strategy influenced 

the communication architecture described below. 

 

https://gitlab.com/horizon-europe-voxreality/multilingual-translation/speech-translation-demo
https://gitlab.com/horizon-europe-voxreality/vision-and-language-models/gpt2
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The clients are receiving two main categories of messages from the server using the 

WebSocket protocol: 1) information about the current ongoings of the theatrical play, which is 

divided into a) a text transcript of the current actor’s speech produced by the server using the 

ASR module and the microphone feed, and b) a text description of the physical stage layout 

produced by the server using the VL-GPT2 module and the camera feed and 2) commands 

on which features of the application to enable in the clients (e.g. 2d subs/3d subs/etc..) which 

is in accordance with the performance delivery and evaluation plan. 

 

The clients are in turn sending two main categories of messages back to the server device IP: 

1) their status at every frame via the WebSocket, so that the facilitator can monitor the stability 

of the system (e.g. detect a client device crash or any other lag or non-compliance), and 2) a 

translation request in the user’s preferred language directly to the server’s IP and exposed 

port using the RESTful API. The client application also has a fallback cloud server address in 

case the local IP/port for the API calls is not replying as part of the system resilience 

improvement. It should be noted that although the neural network model can also provide a 

direct audio-to-text translation service, this option is not preferred for the AR Theatre use case 

since the combination of a single server-located transcription call and multiple client-located 

translation calls achieves the minimum possible latency when scaling up the solution for a 

larger audience. 

 

Logic related to the display of VFX and other background information about the play runs 

independently in the clients. The reason for this is twofold: first, since these are low intensity 

computations that the XR device can perform without strain, having them run on the client 

follows the risk distribution principle. Secondly, this further allows for a diversification of the 

end-user experience, especially with regards to the VFX or the user request for background 

information. Although this diversification is not currently in the user requirements, this 

architecture can cover future requirements where e.g., the theatrical partner may wish to 

provide different content based on the declared user profile, like the age group, or other 

preference settings. This kind of relies logic should typically run on an independent client-

level. 

 

Concludingly and in high level summary (Figure 41), the AR Theatre use case incorporates 

the Neural Machine Translation service (NMT), the Automated Speech Recognition service 

(ASR) and the Vision Language – captioning (VL) service using the above-mentioned edge 

server deployment architecture. 
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Figure 41: Communication flow between client, server, devices and docker containers.  

4.2.1.1 3D Models and Scenes Design 

The AR Theatre application contains two categories of visual assets: 1) assets that create the 

Augmented Reality visual effects to be used during the AR play, which are termed as AR VFX, 

and 2) assets that digitally simulate the physical elements of the theatre, which are typically 

not accessible or rarely accessible during development (i.e. theatrical stage and human 

actors), which are termed digital simulation.   

 

The digital simulation assets will evidently not be used during the actual performance and will 

be substituted by the physical elements during the performance itself. Nevertheless, the digital 

simulation is being used in the introduction and tutorial material, so that the introduction step 

for the audience can take place with higher flexibility (e.g., even before entering the theatrical 

hall). The digital simulation is also being used as a communication medium to discuss and 

plan the physical characteristics of the play with the theatrical partners in advance.  

 

As a sidenote, the simulated stage has smaller dimensions than the theatre stage that is 

currently assigned for the actual performance to better adapt to testing in (office) areas which 

are typically smaller to theatrical venues. Furthermore, the stage design and the placement of 

the actors is indicative and subject to change in ways that do not impact the application. 

 

The AR VFX category should be determined and designed by the theatrical partner and the 

assigned director. For development purposes, a placeholder VFX has been created to 

illustrate the capabilities of the medium. The placeholder AR VFX helps to experientially 

transfer knowledge and know-how from the development team to the theatrical team in terms 

of technical guidelines and expressive capabilities. In technical regards, the developed VFX 

highlights the need for 3D models with an ideal mesh size, shaders with low computational 

needs, materials with no reflective or transparent properties, and low-quantity particle 

systems. In addition, the rendering framework of the application has been designed without 

real-time lights and shadow generation, as well as no post-processing, which also indirectly 

affects the VFX.  
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Expressively, the placeholder VFX that have been developed showcase different approaches 

to AR content, for example: 1) an AR visual extension to the physical stage using static models 

for objects with or without animation (e.g. rocks), 2) AR narrative agents or elements using 

dynamic models with movement animations (e.g. horses running, standing, grazing) and/or 

environmental effects using code-based animations (e.g. waters raising or boiling) and/or 

audio effects with spatialized audio sources (e.g. a thunder audio effect from far away, or a 

crash audio effect from nearby), and finally, 3) an AR actor (e.g. Goddess Artemis), which is 

an AR avatar that can appear on stage next to the physical actors and performs similar 

functions using animations and audio sources. In the implemented example, the AR actor 

performs a series of visual transformations (from deer form to human form) and is voiced by 

a spatialized audio source using pre-recorded theatrical lines. 

 

Concludingly, it should be noted that all the placeholder VFX are indicative and subject to 

change both in terms of concept and appearance, according to the instructions of the theatrical 

partner. The simulation scenes are presented in Figure 42-46 

 

 

Figure 42: Digital stage simulation with avatars for 2 physical actors (King, Messenger) and a 
VFX actor (Artemis) - front view 
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Figure 43: Digital stage simulation with avatars for 2 physical actors and a VFX actor – 
topdown view. 

 

 

 
Figure 44: Layout of the theatrical hall and stage chosen for the performance. 
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Figure 45: Examples of AR VFX, extension to the physical stage with static and animated 

objects. 

 

Figure 46: Examples of AR VFX, narrative elements, environmental effects and animated 
models, as described in the actor’s narration. 

 

4.2.1.2 Application Workflow Diagram  

The application supports a linear flow across three scenes: from the Home scene to the 

Introduction scene and finally to the Performance scene which in turn is comprised of four (4) 

sequential phases: 2D subtitles, 3D subtitles, VFX with 2D subtitles, and User combination 

phase, where the user can choose to experience any of the above features again or to make 

new features combinations of their own (e.g. to choose only VFX with no subtitles, or VFX with 
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3D subtitles). The Home and Introduction scenes are intended to be completed before the 

theatrical performance starts. The progression from Home to Introduction scene is controlled 

by the end-user through the user interface (e.g., with instructions to press “Ready” to proceed). 

The performance scene is intended to start once the theatrical action on the stage begins. The 

start of the Performance scene and the transition from phase to phase is remote-controlled by 

the server through a dedicated user interface and a human facilitator. This combination is 

designed so that users can go through the independent steps of the Home and Introduction 

scene in their own pace but experience the phases of the Performance scene in sync with 

each other with the mediation of the human facilitator through the server remote control 

feature.  

 

In the Home scene, the user is requested to select their language of preference and to proceed 

to the Introduction scene. Access to the Performance scene is locked until the individual user 

has completed the Introduction tutorial and/or the facilitator unlocks it through a remote-control 

command. Figure 47 presents from left to right the language selection screen, scene selection 

with locked access to the Performance scene (mandatory completion of Introduction scene 

first) and the scene selection with unlocked access to the Performance scene. 

 

 
Figure 47: Home scene screenshots. 

 

In the Introductions scene, the content is split into two sections: a short section where the user 

is shown each of the available input methods of the XR device and is required to try them out 

(5 screens - Figure 48), and a longer section where the user is shown the user interface for 

each of the four phases of the Performance and is required to perform any desired 

customizations in advance of the performance (20 screens - Figure 49). The user 

customizations include setting the font size, the z-distance (depth) of the user interface panel 

from the user, the background contrast of text, and the position of the text to accommodate 

better legibility based on individual preferences and visual acuity. The user customization 

settings, as determined during the Introduction scene remain active in the Performance scene, 

so that the user may only need to make minor adaptations during the Performance and remain 

immersed in the play without the need for further interactions.  
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Figure 48: Introduction scene – section A: instructions for input methods. 

 

 
Figure 49: Introduction scene – section B excerpt: instructions for user interface. 

 

The Performance scene (Figure 51) is compartmentalized in four phases to incrementally 

present the AR features to the users and allow for improved comprehension and isolated 

examination of each feature. The user combination phase is intended to allow users to 

experiment freely and create a more informed opinion about their preferences. In the 

Performance scene, the transition between phases is automated and remote-controlled by the 

human facilitator using the server user interface (Figure 50). The transition is indicated to the 

viewer by an informative panel. A small timer with a countdown indicates the duration of each 

phase to the user. The user may at any point use the controller to bring up the user interface 

and make adaptations to their settings (e.g. change language, change font size, etc.). 

  

 

Figure 50: Transition panels. 
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Figure 51: Performance scene sample with user customized 2D subtitles. 

 

When the performance is over, the user is presented with an informative panel and the 

application closes automatically. In the background, the client application creates a traffic log 

of the content that it has received and generated (transcript, scene descriptions and 

translations) with a separate file per service (one transcript log, one translation log and one 

scene description log). In the next version of the application, the application will also generate 

a user log with the settings customization, that is generated once after the Introduction scene 

is completed and updated once again at the end of the performance. 

 

Finally, the server application (Figure 52) currently allows the facilitator to choose an IP/port 

for the WebSocket connection (with the added feature of locating the IP of the device in the 

local network and assigning it automatically as the server IP) and proceeds to display a list of 

all connected clients. The server application can remote controls all clients simultaneously 

with a set of commands for functionalities such as localization, scene selection, phase 

selection, etc. This allows for improved testing, coordinating and facilitating the experience 

across multiple devices. In the next version, the server will be expanded to allow for individual 

control of each client using a separate port per client, as part of the crash recovery plan. 

Individual control e.g., is useful in case a client crashes and needs to be brought up to speed 
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with the rest of the clients and the play. The server should also be able to remote-control a 

client to load the previously stored user settings to recover from a crash without loss of 

information. 

    

 

 

Figure 52: Server user interface for remote control of the XR applications.  

 

4.2.2 Implementation Details 

The development of the AR Theatre application follows an iterative approach to adapt to the 

unique challenges posed by the nature of the use case. In more detail, the first version of the 

application was implemented running independently on the XR client using the digital 

simulated stage as visual aid and voice recordings for the actor speech as audio aid. Due to 

the lack of requiring a server, this approach was favored to provide increased mobility and 

ease of use for testing with a single XR device and for showcasing and communicating 

purposes between the various stakeholders during the first stages of the development 

process. The first version also targeted the high priority user requirements, most notably the 

subtitles and the VFX. 

 

The second version of the application was implemented using a server-client architecture as 

described above but maintaining the digital simulation of the stage and the voice recordings 

as a measure to facilitate user testing independently of the limited access to the theatrical 

space and/or actor availability. This version covers most of the high and medium user 

requirements and does not address the low priority ones (e.g. the background information 

provision). 

 

The third and final version of the application removes the digital simulation and makes use 

directly of the spatial mapping and tracking of the XR device to project the augmented reality 

content in predefined locations in the physical space, as well as the live feed from a 
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microphone input source instead of recordings. This version will cover all the user 

requirements. 

 

The first version of the application was completed in November 2023. The second version of 

the application has been completed in February 2024 and at the time of the report is being 

tested and finetuned. The third version of the application is due to be delivered by the end of 

September 2024 with a view to a larger-scale pilot testing in spring of 2025. 

4.2.2.1 Development Environment Setup 

Both server and client applications have been developed using the Unity Game Engine 

(version 2022) with the extension of appropriate packages, most notably the Unity XR 

Management plugin and the respective Magic Leap XR Plugin, as distributed through the Unity 

package manager, the Magic Leap SDK (com.magicleap.unitysdk)  and the Magic Leap Setup 

Tool (com.magicleap.setuptool) as provided through open repositories by Magic Leap. All the 

relevant dependencies have also been installed. Visual Studio 2022 is the selected IDE for all 

local code development and debugging. A private repository in GitHub has been used as the 

version control system for the development process. The development process has been 

tracked and managed with the help of a GitHub Project page (kanban style tool) and a Miro 

Board has been created for wireframing, application flow diagramming and user feedback 

gathering. Finally, development video footage and snapshots from within the Unity Editor have 

been captured using the Unity Recorder package. 

 

In addition, Android Debug Bridge (ADB) tools 7  have been used for starting, stopping, 

installing, patching and debugging the applications on the Magic Leap 2, and for other data 

management tasks, like transferring files. Supplementary, the Magic Leap 2 Hub software8 

has been used for maintaining and communicating with the Magic Leap 2, namely updating 

the development SDK, updating the OS in the devices, streaming from the devices in wired 

and wireless mode.  

 

Streaming is also important in this use case for monitoring user's actions during testing, and 

for recording footage for communicating and documentation purposes. The Windows 

“Connect to a Wireless Display” extra feature9 has been installed in the laptop and is being 

used for wireless casting from the Magic Leap 2 to a monitor. OBS Studio has been used for 

recording the monitor feed10. Finally, the built-in photo/video recording function of the Magic 

Leap 2, which can be triggered by voice commands, has also been used in cases where the 

application is not occupying the microphone feed of the device. 

4.2.2.2 3D Models and Scene Creation  

As detailed in the 5.2.1.1, the 3D models for the AR Theatre use case are currently 

placeholders for development and communication purposes. For this reason, minimum 

required effort has been invested in their production and a high abstraction, low polygon 

approach with no textures has been adopted. The digital simulation assets, i.e. the 3D models 

 
7 https://developer.android.com/tools/adb  
8 https://ml2-developer.magicleap.com/downloads  
9 https://support.microsoft.com/en-us/windows/screen-mirroring-and-projecting-to-your-pc-5af9f371-
c704-1c7f-8f0d-fa607551d09c 
10 https://obsproject.com/  

http://com.magicleap.unitysdk/
http://com.magicleap.setuptool/
https://developer.android.com/tools/adb
https://ml2-developer.magicleap.com/downloads
https://support.microsoft.com/en-us/windows/screen-mirroring-and-projecting-to-your-pc-5af9f371-c704-1c7f-8f0d-fa607551d09c
https://support.microsoft.com/en-us/windows/screen-mirroring-and-projecting-to-your-pc-5af9f371-c704-1c7f-8f0d-fa607551d09c
https://obsproject.com/
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for the stage and the actors have been created internally using Blender, which is a free and 

open-source software for 3D modelling. A subtle animation has been designed and assigned 

to the digital actors to offer a sense of natural movement. The animation is being triggered 

when the respective digital actor speaks according to the transcript. The placeholder assets 

for the VFX have been created locally in their majority, but in this case, some assets were also 

sourced from third parties. In specific, the rigged animal models (horses, bull) originate from 

a commercial source11 and the stone models with their textured material were sourced from a 

3D model hub and distributed with a creative commons license from their creator12.  

 

4.2.2.3 Core Algorithms and Techniques  

The full pipeline for this application involves the following parallel routines:  

 

Subtitle routine 

 The steps of this routine are: 

1) Server-connected microphone → continuous audio feed → API call to the continuous 

transcription algorithm of the ASR model → WebSocket message to clients with 

timestamped transcription result as JSON data.  

It should be noted that for the first and second version of the application, the available 

transcription algorithm (/transcribe_audio_files method) receives audio recordings 

instead of an audio stream. To amend for this fact, the current application can perform 

a microphone recording with a customizable recording duration to simulate the 

behavior of a stream-based approach. To facilitate testing and development given the 

absence of actors, synthetic speech recordings of the theatrical text have been 

produced with each audio file (.wav) containing a single line of the theatrical lyrics 

(average duration of each file 2-3 seconds, 180 files). Even more, to better simulate 

the actors, selected lines (~100) have also been recorded by human agents. 

Therefore, the application during development uses the playback of the pre-generated 

audio files instead of a live microphone recording as audio data for the transcription 

step. Finally, an optional addition at this stage is to receive separate microphone 

recordings per actor/character, so that the generated transcripts can be easily tagged 

with the character's name.  

2) Client message receipt → JSON deserialization of message → addition of transcription 

to backlog of received messages → client callback with translation request of the latest 

transcript in the user selected language, using the up to two previous transcript lines 

and any available scene description as context (/contextual_translate_text).  

If this method cannot produce adequate quality results for the chosen theatrical text 

(to be determined after further testing and evaluation), then the alternative is to 

manually produce a custom override dictionary for selected erroneous terms, use the 

“/upload_terminology" method to provide the data to the model and the 

“contextual_terminology_translate_text" during runtime instead of the 

/contextual_translate_text.  

3) Upon successful resolution of the http request → display of subtitles in the currently 

enabled mode with the current user settings.  

 
11 https://assetstore.unity.com/packages/3d/characters/animals/low-poly-animated-animals-93089  
12 https://sketchfab.com/3d-models/stylized-lowpoly-rock-6e476441b5614231bf4e8de194c418d9  

http://localhost:5033/docs#/default/transcribe_audio_file_transcribe_audio_files_post
http://localhost:5033/docs#/default/contextual_translate_text_contextual_translate_text_post
http://localhost:5033/docs#/default/upload_terminology_upload_terminology_post
http://localhost:5033/docs#/default/contextual_terminology_translate_text_contextual_terminology_translate_text_post
http://localhost:5033/docs#/default/contextual_translate_text_contextual_translate_text_post
https://assetstore.unity.com/packages/3d/characters/animals/low-poly-animated-animals-93089
https://sketchfab.com/3d-models/stylized-lowpoly-rock-6e476441b5614231bf4e8de194c418d9
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At this stage, the application also consults the "speaker name” which is tagged to the 

transcript and logged in the JSON data sent by the server. If the subtitles are in 2D 

mode, the application displays the speaker's name on top of the subtitles. If the 

subtitles are in 3D mode, the application enables the respective subtitle panel that is 

matched to the speaker's position. If the http request fails, then the application should 

attempt translation request again with fallback cloud server address. If this fails again, 

the application should display nothing. Both successful and unsuccessful requests 

should be added to the respective NMT data log. 

 

The selected play for the application testing is in the Greek language and it has been observed 

that the transcription of Greek contains various spelling errors, which carry over to erroneous 

translations in the next step. Since the play is not improvised but a fully scripted play, an 

alternative approach is examined, where the audio recording is matched to an excerpt of the 

given script, instead of being transcribed live. This approach will be tested in the next version 

of the application. This approach also makes the tagging of the current speaker feasible with 

a single microphone channel since this information can exist in the script and be retrieved 

alongside the excerpt by the matching algorithm. Finally, it should be noted that this approach 

also increases human overview and control over the resulting translation which is a desired 

trait for this use case. 

 

Vision language routine  

This routine consists of the following steps:  

1) Server-connected camera → image capture at configurable intervals (roughly every 2 

seconds, similar to the duration of an average lyrics line recording) → Vision language 

captioning algorithm → WebSocket message to clients with timestamped scene 

description/captioning result as JSON data. 

The exact resolution of the camera image to be sent for captioning and the frequency 

of the captioning call should be determined by the difference between the vision 

language routine latency and the subtitle routine latency aiming for the best possible 

synchronization. This needs to be determined by further testing, since the distance of 

the camera to the scene is also an influential parameter. 

2) Client message receipt → JSON deserialization → add to backlog of received 

messages → storage of latest message as contextual information for translation calls.  

Further testing which should take place in the actual conditions of the theatrical stage 

should highlight if any finetuning of the model is required to produce adequate quality 

results given the individual nature of the stage objects. 

 

VFX routine 

The VFX are triggered by keywords in the transcript (and not the translation) and/or the scene 

description. The scanning logic is performed in the clients and is tied to a callback of the 

WebSocket client upon receipt of a transcript or scene description message from the server. 

Currently implemented triggers are detecting an individual word or short phrase for the first or 

Nth time in the transcript (e.g., trigger VFX "a” when the phrase “πατρική κατάρα!” is heard for 

the first time). The spelling errors that the ASR transcription produces for the Greek language, 

make this triggering method unreliable and provide yet another reason to highlight the audio 

matching approach as more suitable to the needs of the use case. Another triggering method 

that is implemented is based on the index of a specific lyrics line (e.g., trigger VFX “a” when 

lyrics line 173 has been spoken). This is easily feasible in tightly controlled conditions like 
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during development where the digital simulation with an audio recording playback per lyrics 

line is used but can prove unreliable with a live microphone recording where the audio can be 

cut off at random intervals. This is another problem area which the audio matching approach 

can circumvent, since the lyrics index can be tagged in the script play and can be retrieved 

alongside the excerpt with any other desired metadata.  

 

With respect to the rendering of the VFX, it should be noted that the VFX can be split into user 

space and world space VFX. User space VFX are positioned in a coordinate system relative 

to the user and are thus consistent in their generation and rendering whether during 

development with the digital simulation stage or whether during performance in the actual 

theatre. Examples of user space VFX are environmental effects like rain (i.e. effects without a 

clear origin point or shape), or objects whose position is sensibly related to the viewer as an 

individual (e.g. making a flower appear in front of every viewer). World space VFX needs to 

be positioned in a specific location in the actual physical space and that position needs to be 

identical across all client applications, regardless of the viewer's position. This requires the 

existence of spatial mapping and object anchoring logic in the SDK of the XR device, which 

the Magic Leap 2 device supports. This feature allows the AR VFX categories such as the AR 

expansion of the scene or the AR VFX actor presence. It follows that the type of VFX and their 

triggering keyword can be arbitrarily combined. 

 

In the next version of the application the following changes will be implemented in order of 

priority:  

1) The adoption of the audio matching algorithm should be implemented and the 

transition from an audio file-based to an audio stream-based approach should be 

completed.  

2) The transition from the digital simulation stage to the physical stage should be 

completed, specifically the code for the generation of the world space VFX. 

3) Further resilience and recovery features should be designed and implemented. Two 

designed features are pending for development: 1) the clients should declare their 

status at every frame to the server, so that the human facilitator can monitor and 

manage incidents. 2) the clients should save the user customizations in persistent 

memory and expose a remote-controlled (by the server) command for reloading them 

in case of an application crash. 

4) The low priority user requirements should be designed and implemented, specifically 

the background information call. 

5) The optional features could be designed and implemented, specifically the scene 

description call. 

 

4.2.2.4 User Interface Implementation 

The user interface is designed for a persona with minimal familiarity with AR technology and 

the user input modalities are required to be the least intrusive for a theatrical environment. 

Furthermore, the user interface should also aim to address high accessibility and inclusivity 

standards. These parameters are detailed in user requirements entries 1, 4, 5, 8, 14, 15 and 

27 and are the main factors which informed the design decisions for the user interface. 

  

As a result, the input methods for the application are restricted to two button presses for 

simplicity (one main and one secondary). The main method is the equivalent of the mouse 
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input in a traditional setup and is provided by a ray originating from the controller for pointing 

and a button press (Trigger) for the clicking. This method covers most user interactions. The 

secondary button press (Bumper) was intended to toggle the user interface on and off at any 

point for increased immersion in the play. All input methods are shown to the user and 

practiced in an interactive tutorial before the start of the performance. In addition, the 

application provided a digital rendering of the controller overlayed on the physical controller, 

which had the available buttons highlighted in yellow color for further guidance. It should be 

added that an additional button for accessing a hidden debug menu that is known only to the 

facilitator has also been implemented.  

 

 

Figure 53: 3D model of the controller with the ray for interacting with the UI and the available 
button highlighted in yellow color. 
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Figure 54: Tutorial covering all the input methods (2) with a hands-on approach. 

 

 

 

More importantly, on the user interface design itself, accessibility standards and user 

customization options were implemented. Typical web-based accessibility standards dictate 

font size, contrast ratio, font type, line distance, and similar characteristics that relate to 

legibility. Given the fact that such standards do not exist yet for AR environments, default 

values for the design of the UI were influenced by the Web Content Accessibility Guidelines 

(WCAG) international standard and the user was provided with settings to adapt those values 

to their preference within a reasonable range. This was considered highly important since 

subtitle provision is one of the high priority user requirements for this use case and legibility is 

paramount for this feature. In specific, the user was allowed to edit the font size with +/- buttons 

for incremental changes, edit the distance of the entire panel with a slider, edit the opacity of 

the background of the subtitles with a slider, and edit the position of the subtitles incrementally 

either only vertically in the 2D mode, or vertically and horizontally in the 3D mode. 

Furthermore, usability reasons led design decisions such as the size and placement of the 

interactive elements (buttons, sliders). For this reason, use of typing, which would require an 

on-screen keyboard with overall low usability, was minimized. To further support usability, a 

visual aid for targeting (reticle) was added to the ray controller, the ray had two visual states 

(active/inactive) to denote if the user was targeting an interactive element or not, and most 

interactive elements had a visual response to hover events. Finally, recognizable iconography 

was chosen to render most buttons as self-explanatory and thus maintain a clean look to the 

UI with minimum label text.  

 

Another important design decision for the UI was the implementation of the Immersive mode. 

As mentioned, the user could toggle the UI on/off with the help of a button on their controller. 

The default state of the application for the Performance scene was to start with the Immersive 

mode toggled on, therefore the user interface was hidden. Given the fact that the user was 

prompted to make any required adaptations during the Introduction phase, the user could 

potentially have little or no reasons to bring the UI up again and therefore, view most of the 
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performance with no interference. Having the UI as a provisional feature during the 

performance allowed the tradeoff of designing the UI elements with the highest usability level 

(large buttons, central positioning, bright colors), but also with the highest occlusion level to 

the theatrical stage. 

 

 

Figure 55: From wireframes on Miro for discussion and feedback to implementation in the 
application. 

4.2.2.5 Summary of Achieved User Requirements  

In summary, all the user requirements marked as High or Medium that relate to the XR 

application and one requirement marked as Low have been met in the second version of the 

application. The failed requirements marked as High or Medium relate to the lack of actors, 

director, stage or background information about the play as determined by a writer or director 

and will be targeted in the third version of the application. Therefore, the development of the 

XR application for the use case theatre has from a technical point incorporated most of the 

currently available resources at the time of writing. 

4.3 Training Assistant  

The use case focuses on the development of an augmented reality (AR) industrial assembly 

training application aimed at improving the training experience through the integration of 

VOXReality's automated speech recognition (ASR) model and the dialogue system. 

Traditional training methods often lack interactivity and adaptability, leading to suboptimal 

learning outcomes. By integrating artificial intelligence into the AR environment, this use case 

seeks to create a more engaging and effective training environment. Key features of the 

application include visualization and manipulation of 3D computer-aided-design (CAD) files 

(Figure 56) in AR environment, an interactive virtual training assistant with real-time 

performance monitoring, and a dynamic dialogue system powered by natural language 

processing (NLP) and speech-to-text capabilities. 

  

The prime constituent of the training assistant technology is the application Hololight Space 

Assembly (shortly Assembly). The training process begins with the loading of a 3D CAD file, 

which serves as the basis for the assembly task. Trainees are required to accurately assemble 

constituent parts within the CAD object's frame. Assembly supports the loading and interaction 
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with previously created asset bundles that contain all the relevant scene information (CAD 

file(s), tools, other objects like table or shelves), scripts for interaction with the models, menu 

interaction and relevant algorithms. Performance metrics, such as time spent and incorrect 

insertions, are monitored in real-time based on predefined thresholds. Additionally, Assembly 

utilizes Hololight Stream, to remotely render the application from a laptop with a powerful GPU 

to AR smart glasses in order to bypass the device’s rendering limitations. Combined with the 

remote rendering and streaming functionalities, the AR training application (server) is hosted 

on a laptop and streamed to the HoloLens 213 (client). 

 

 

Figure 56: The Raptor engine CAD model which is used for the assembly task in the current 
use case. 

Furthermore, the Assembly application is enhanced through the integration of ASR. ASR 

assists with the conversion of audio input to text (speech-to-text). The dialogue system 

comprises of a Natural Language Understanding (NLU) model, responsible for comprehending 

user input, and a Natural Language Generation (NLG) model, tasked with creating coherent 

and meaningful responses. This allows for natural verbal interaction with the virtual assistant, 

eliminating the need to learn predefined keywords. The forthcoming versions of the training 

assistant will provide contextually relevant information in response to trainee inquiries. 

Moreover, upon detecting the violation of the industrial assembly protocol, the training 

assistant intervenes by offering support and training aids through an interactive dialogue 

system. An additional feature of the training assistant includes the ability to present PDFs, 

relevant videos, or specific files upon user request. This multimedia capability expands the 

agent's functionalities, allowing it to provide diverse and contextually rich information in 

response to user inquiries. 

4.3.1 System Architecture and Design 

4.3.1.1 3D Models and Scenes Design/Creation 

Traditional Training Challenges 

Conventional paper-based training methods fail to enhance muscle memory due to their two-

dimensional nature, resulting in the failure of comprehensive information transfer. Such 

training aids primarily in the memorization of assembly sequences at the most. Conversely, 

practical training utilizing authentic components facilitates the development of muscle memory 

and imparts all pertinent information to trainees, including spatial placement techniques and 

 
13 https://www.microsoft.com/en-us/hololens  

https://www.microsoft.com/en-us/hololens
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micro-actions essential for assembly steps. However, this approach demands substantial 

resources, necessitating the provision of dedicated parts for training purposes, establishment 

of specific training venues within companies, and allocation of individualized training sessions 

by instructors, thereby incurring significant time costs. Moreover, on-site training is imperative 

as large-scale objects, such as automobile frames, cannot be feasibly transported to trainees' 

residences. External factors like global pandemics can disrupt training activities, halting 

onboarding progress once restrictions are lifted. To mitigate such limitations, an application for 

virtual training in XR environment with an interactive virtual training assistant was 

conceptualized. 

  
Conceptualization of the Application 

The application was conceptualized to,  

• Closely simulate real-world usage scenarios, incorporating elements such as shelf 

configurations and object placements to enhance muscle memory, thereby enabling 

trainees to intuitively identify the next component to retrieve. 

• Enable trainees to interact seamlessly with each component required for assembly. 

• Integrate pre-assembly steps into the primary training with virtual table, shelve and 

toolkits as it aids in reinforcing muscle memory. 

• Incorporate tool interaction to simulate realistic training experiences while 

circumventing hazardous accidents which are otherwise probable in the real-life 

scenario. This involves the interaction with indispensable tools such as a drill with 

audio feedback. Incorporating sound effects further enhances immersion by 

compensating for the absence of physical weight and gravity in virtual objects. 

• Accurately define the intermediary steps such as visual inspections, precise object 

placements, and adherence to safety or logistical procedures via QR code scanning 

to ensure comprehensive training. 

 

Inclusive Training Support Measures: 

• Implementation of difficulty modes: The application features different difficulty levels 

(easy, medium, hard), with easy mode providing assembly preview, visual cues to 

disclose assembly sequence (Figure 57 and Figure 58), guiding lines and object 

locking for enhanced guidance. Conversely, hard mode challenges trainees by 

withholding visual aids and object locking. 

• Various accuracy modes: Trainees can switch between simple and advanced 

snapping modes, catering to varying skill levels. Simple snapping facilitates easier 

attachment, while advanced snapping necessitates precise alignment for successful 

object placement. Simple snap is for trainers, as it is the easiest method of attachment. 

Advanced is more realistic as a nearly perfect alignment is necessary for the object to 

snap into place. 

• Performance indicators: The application employs color-coded highlights to denote 

correct (green) and incorrect (red) object selections, aiding user comprehension. 

Additionally, visual cues and colour changes at sequence flags signify completion 

status, facilitating progress tracking. 

• Integration of audio cues: Audio cues alert trainees when objects are correctly placed, 

further enhancing the training experience. 

• Pre-assembly: The application enables the user to perform pre-assembly of the 

grabbable parts on the table / shelve before starting the actual assembly task. 
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Figure 57: Parts of the CAD model on the shelve. 

 

 
Figure 58: Pre-assembly of the parts with visual guiding cues. 

 

Simplifying user interaction 

Efforts are made to streamline user interaction, with features such as a hand menu (Figure 

59) to minimize visual clutter in the virtual space. Ongoing and future enhancements, such as 

the integration of virtual and interactive training assistant with vocal capabilities further reduce 

the reliance on hand menu interactions, thereby promoting ease of use. 

 

 
Figure 59: Hand menu design for different difficulty modes. 
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4.3.1.2 Application Workflow Diagram  

The VOXReality Training Assistant (Figure 60) utilizes Hololight Space assembly application 

for visualization and interaction of 3D CAD files for industrial assembly training tasks. The 

application will run on a computer and the data is streamed to the client device like the 

Hololens2. The audio-video communication is enabled through WebRTC. The ASR 

component will generate textual counterpart of the user speech and transmit it to the Dialogue 

System. The Dialogue System will use NLU model to comprehend user input, and the NLG 

model to create coherent responses which will then be delivered as audio responses. These 

audio responses from the virtual assistant will enhance the user experience and the training 

efficiency during industrial assembly training in Hololight Space Assembly which is rendered 

to the client device.  

 
Figure 60: Application workflow diagram of the training assistant. 

4.3.2 Implementation Details 

4.3.2.1 Development Environment Setup 

For the VOXReality project, the requisite hardware and equipment are meticulously selected 

to facilitate the generation, visualization, and interactive engagement with 3D content, 

specifically tailored for assembly training scenarios. The foundational elements encompass 

dedicated augmented reality glasses and an associated server device tasked with hosting the 

AR Training application. The current choice for augmented reality glasses is the HoloLens 2, 

a Microsoft product. 

 

The VOXReality use cases demand the orchestration of a seamless flow of data, achieved 

through the utilization of the AR Training application, which employs remote rendering and 

application streaming through Hololight Stream. This method culminates in the streaming of 

the entire application, including rendered content, to the HoloLens 2 device. To meet the 

computational demands of this application, the requisite laptop must adhere to specifications, 

which include an operating system compatible with Windows 10 (Build 10.0.17763), Windows 

11, or Windows Server 2019, a minimum of 16 GB of memory (with a recommended 64 GB), 

and a CPU selection ranging from an Intel i5 8th Gen. with 6 Cores or AMD Ryzen 7 3700X 

at the minimum, to an Intel i7 12 Gen. with 12 Cores or AMD Ryzen 9 3900X for optimal 

performance. GPU considerations mandate a minimum of NVIDIA GTX 1070Ti or NVIDIA 

GRID for VMs, with a recommended NVIDIA RTX 3080 TI, while storage requirements 

necessitate either SSD or NVMe technology. 
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The critical link in facilitating data exchange between the AR Application and the HoloLens 2 

is the WebRTC protocol. This requires a robust 5 GHz Wi-Fi connection, with a minimum 

bandwidth of 20 Mbit, and a recommended bandwidth of 40 Mbit. Interaction with the AR 

application is orchestrated through the laptop interface, exemplified in the context of the AI 

models developed within the VOXReality project. Notably, in the future versions of the 

application, the microphones embedded within the HoloLens 2 device facilitate the 

transmission of speech data to the VOXReality ASR model, mediated through the AR Training 

Application, wherein interactions are confined solely to the main application, rather than the 

HoloLens 2 device. 

4.3.2.2 Core Algorithms and Techniques  

The streaming technology 

The AR training application deals with computationally intense CAD files and real time 

manipulation of the CAD objects in the XR environment. The mobile XR devices with their 

limited computational processing power pose a challenge to the functionality and usability of 

such applications. An effective approach is to outsource the rendering process, enabling 

complete XR applications to be streamed from powerful local servers or the cloud.  Hence the 

application will leverage Unity game engine technology and incorporate the Hololight Stream 

software development kit (SDK). Stream-enabled applications facilitate a client-server 

environment that offloads computationally intensive rendering to a dedicated server with 

robust graphics processing, streaming high-fidelity AR visualizations to client devices like the 

HoloLens. Hololight Stream mediates streaming via WebRTC protocol. The streaming process 

is two-fold between the server (XR application with integrated Hololight Stream plugin) and a 

client Hololight Stream app (installed on the XR device). The XR client receives pixel streams 

composing the content rendered by the XR application and returns sensor data back to the 

application. This plugin thus enables remote rendering and full application streaming, 

leveraging edge device computational and graphics processing power. Such remote rendering 

and streaming circumvent limitations of XR devices. 

  
Animations 

The training assistant utilizes animations made with keyframe animations in Unity. Through 

keyframe animation, the state of the object is recorded and the changes between each 

keyframe is interpolated. This allows basic animation of objects within the scene which 

includes object rotations and changing the position or size. 

As part of the interactive assembly training, the assistant utilizes avatars to enhance the user 

experience. 

  
Language model and ASR 

The application will employ the automatic speech recognition (ASR) component developed by 

the consortium to transcribe users' spoken interactions with the digital assistant. The 

generated text from ASR will feed into the dialogue agent (DA) component where a dialogue 

system assists users in machine assembly, with English as the mediation language. The DA 

component will produce English responses that utilize text-to-speech technology to provide 

audio interaction. Moreover, the agent will be composed of natural language understanding to 

comprehend users' spoken requests and natural language generation to produce meaningful 

responses.  
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Algorithms 

Majority of the codes and algorithms cannot be openly distributed. Nevertheless, with regards 

to certain functionalities, such as the microphone, the custom send functions of Hololight 

Stream are used. On the Server-Side, CustomSend object in the scene in Unity has been 

enabled. Associated script should be found in Packages under Hololight.Isar.Runtime in 

CustomSendExample.cs. ServerApi, ApiConfig, ConnectionCallbacks and ConnectionHandle 

are initialized on the Start. Currently, default message (ping) from Unity is running based on 

the timer OnTimerElapsed function in CustomSendExample.cs and can be modified to the 

use case. The message to be sent can be assigned under HlrCustomMessage defined under 

ConnectionApi.cs. Through the ConnectionApi, PushCustomMessage the message can be 

sent to the client. The type of encoding while assigning message as bytes stream must be 

taken care of. Following is an example to send “OpenKeyboard” message on a button press 

event to Client. 

 
Incoming messages from the client are received under OnCustomMessageReceived event 

handler and can be verified and updated further depending on the use case. 

 

 
 

On the Client-Side message is received (for reference) under: Remote Rendering in 

ImmersiveAppView.cpp under Init function in the callback m_customMessageCallback. 

Furthermore, message can be verified or used to trigger an event by registering in the 

register_custom_message_handler of the ConnectionApi.   
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An Example to open System Keyboard on the HoloLens based on message from Server-Side: 

 

 
 

This triggers function RequestUserInput() in the client to open System keyboard on the 

incoming message. Currently, default message from client (pong) to the server is assigned in 

the onConnectionStateChanged in the ImmersiveAppView.cpp running on timer periodically 

and can be changed according to the usage. To send a message back is similar to the Server-

Side code and can be achieved by assigning to HlrCustomMessage using ConnectionApi 

push_custom_message. An example of sending every character or a string on a Key down 

event of the system keyboard from the client. 

 

 
 

4.3.2.3 User Interface Implementation 

The trainee’s AR experience involves the virtual manipulation of object components in the 

training environment. For the virtual training, CAD files will be visualized in 3D and the parts 

of an industrial model will be assembled in the correct sequence on the object’s frame. To 

make the industrial training task efficient and user friendly, a training assistant is introduced 

instead of the tedious hand menu interaction. The training assistant is equipped to perform 

verbal interaction using language models. The current capabilities of the training assistant are 

limited to operating in accordance with the directives of the trainee to skip a step or retrieve 

the file names. The training assistant, however, will be equipped in the future to process audio 

inputs from the trainee to launch the application, initiate training, and perform the assembly 

task with perpetual aid from the training assistant until the end of the task. The response will 

also be displayed as text at specific locations in the XR visual field. The ultimate output of this 

use case will manifest as a voice based interactive virtual assistant for industrial assembly 

training.  

  

Using the ‘admin’ mode in the application, the user can define the order of assembly and add 

additional modular steps like scanning and pushing. The order of alignment can be tracked 

through tool tips linked to the individual parts of the object. Tooltips show the order of attached 
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parts, modular steps, and screws. The correctly attached or finished steps are marked with 

green tooltips and the rest are shown in blue (Figure 61). The tooltips can be displaced by the 

user, in case they overlap, or block the line of sight. 

 
Figure 61: Tooltips displaying visual cues for correctly attached / finished steps. 

 

The user can switch to ‘trainee’ mode to execute training in 3 different difficulty levels namely, 

easy, medium, and hard (Figure 62). The precise implication of each configuration was stated 

earlier. 

 
Figure 62: Menu to configure the difficulty level of the training. 

 

Before the assembly task, the user can incorporate the ‘table’ or the ‘shelve’ feature which 

can be added from the asset-bundle and associate all the grabbable parts to it. Moving the 

table allows the user to move all the grabbable objects together within or outside of the XR 

visual field. The lock / unlock button located on the right side of the object provides the user 

with the capability to secure the shelf or table in a fixed position (Figure 63 and Figure 64). It 

is important to note that the design ensures the prevention of inadvertent shifts. Nevertheless, 

should it become necessary to modify the height of the table, this can be effortlessly achieved 

by unlocking the object. 
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Figure 63: Shelve in the asset bundle, where the object lock feature is displayed on the top-

right corner. 

 

 
Figure 64: Table in the asset bundle, where the object lock feature is displayed on the bottom-

right corner. 

 

The Assembly application provides a ‘grabbing’ feature that facilitates the manipulation of 

virtual objects in a user-friendly manner. We have devised a grabbing algorithm that enhances 

the existing default grabbing functionality of the HoloLens 2. It detects the instances when the 

virtual hand engages with the three-dimensional object's surface and links the object to the 

hand when it is grabbed. Even if the HoloLens 2 loses visual contact with the hand, the system 

retains this information. When the hand reappears, the object swiftly aligns with the hand's 

position stabilizing the interaction with the object. This grabbing functionality is complemented 

by visual and auditory cues that inform the user whether they have successfully grabbed the 

object or released it. The visual cues employed depend on the difficulty level of the training, 

utilizing colour codes such as green and red to indicate the correct and incorrect parts being 

grabbed respectively (Figure 65). 
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Figure 65: Colour-code visual cues showing the correct (green) and incorrect (red) object 

selection. 

When the level of difficulty is chosen to be ‘easy’, the trace of the object is displayed in yellow 

at its destination and required rotation (Figure 66). There is furthermore a guiding line that 

extends from the part to its counterpart thereby aiding the user in identifying the precise 

location. 

 
Figure 66: Colour-coded visual cues with the object destination (yellow) and a guing line 

connecting the grabbed object and its destination. 

 

To assist the user to rotate, align and place the object, the application offers a simple and an 

advanced ‘snap’ feature. The ‘simple snap’ feature is triggered when the grabbable assembly 

part is connected to the invisible bounding box around the counter part by a single line. As a 

result, the simple snap executes an animation that accurately positions the grabbable part to 

its intended location. The 'advanced snap' feature reduces the bounding box size of the 

counterpart and requires accurate alignment of the grabbable part and the bounding box with 

3 lines. The snapping animation only occurs when all 3 lines are aligned accurately, and the 

part reaches the fixed threshold of the bounding box. The application offers an object ‘locking’ 

feature which fixes the grabbable part after being placed in the solid model. The part could 

however be removed and displaced again using the ‘unlocking’ feature. 

 
Figure 67: Menu to configure difficulty levels and snap features. 
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The iterative nature of this process ensures that all components of the CAD object are 

effectively joined together. Through this process, the user acquires the knowledge and 

comprehension necessary to successfully assemble the object virtually. Once this 

understanding is obtained, the virtual assistant can present the user with the opportunity to 

recommence the training at potentially more challenging difficulty levels. Consequently, the 

user is encouraged to attempt the different difficulty levels in a sequential manner. By engaging 

in this serial assembly practice and receiving ongoing support from the virtual assistant, the 

user is provided with a distinct training environment. Upon completing each difficulty level, the 

trainee is furnished with relevant performance metrics, such as the time taken to complete the 

entire task, or the time spent on each individual step. This assisted virtual training enables the 

trainee to practically assemble the industrial gadgets with efficiency in the absence of 

assistance. Through the implementation of a practical and user-friendly environment, certain 

elements of muscle memory for industrial assembly can be imparted. The dissemination of this 

training can be effortlessly extended to various factories without the need for any hardware 

equipment apart from the initial setup of this training assistant. In order to conduct ergonomic 

evaluations, the virtual components have the capability to be superimposed onto an actual 

framework, thereby facilitating the examination of these aspects. 

4.3.2.4 Summary of Achieved User Requirements  

The completed tasks in the initial phase of the project have successfully achieved their 

objectives, focusing on developing an augmented reality (AR) industrial training scenario. This 

includes setting up the environment, offering multiple difficulty levels, ensuring language 

compatibility, and integrating interactive features such as object manipulation and user 

feedback. Additionally, progress has been made in assessing user performance and 

interaction with the virtual agent, although some aspects remain partially completed, such as 

implementing assessment metrics and providing options for instructional delivery. However, 

the overall completion of these tasks sets a solid foundation for the next phase of 

development. 

 

In the ongoing tasks, there are several open objectives awaiting completion, mainly centred 

around enhancing user interaction with the virtual agent, refining the user interface, and 

improving feedback mechanisms. These tasks aim to provide users with a more intuitive and 

personalized training experience, including features like on-demand assistance, customizable 

interfaces, and immediate feedback on task completion. Although these tasks are yet to be 

finished, the completion of the interface to Hololight Space in the initial phase ensures that 

incorporating these open tasks into the second iteration poses minimal risk to the project 

timeline. The upcoming pilots will primarily focus on testing the general intractability with the 

virtual agent, with feedback utilized to further refine usability and functionality. 
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5 Conclusions  

The work presented in this document is connected to the WP4, whose primary objectives are 

to deploy the VOXReality AI models across all use case along with providing comprehensive 

documentation on the various deployment methods for these AI models. Additionally, this WP 

is responsible for the sharing of those models to third parties. Moreover, it involves the 

investigation of the ‘once-for-all’ training scheme and the inference optimization methods. To 

this end, activities regarding the implementation of XR applications are conducted in the WP4.  

 

This document presents an overview of the SOTA methods regarding the “once-for-all” 

training methods and the AI model optimization techniques. Additionally, it includes some 

initial results from the application of VOXReality optimization tool. Subsequently, it presents 

the VOXReality model optimization approach that is applied in VOXReality models. Regarding 

the deployment of pre-trained models, the document outlines the process for deploying 

VOXReality models onto a development server following the CI/CD pipeline, for validation and 

testing purposes. Furthermore, it includes guidelines on the deployment of models via source 

code and Docker images. The sharing of the model is achieved by Hugging Face. Lastly, it 

provides the implementation details of the three VOXReality XR applications: VR Conference, 

Augmented Theater and Training Assistant.  

 

Focusing on the results achieved up to the 17th month, the proposed VOXReality post-training 

optimization method generally maintains or even enhances prediction quality while reducing 

the inference time. Additionally, the shift to ONNX with graph optimization further reduces 

inference time, indicating its effectiveness in streamlining model performance without 

significantly compromising output quality. Concerning the deployment methods of VOXReality 

models, two methods are currently presented, those are source code-based and container-

based deployment. The container-based deployment involves utilizing Docker images from 

Docker Hub as well as employing Docker Compose Comprehensive deployment guidelines 

for these methods are provided to assist users. Additionally, Hugging Face host a dedicated 

repository where the pre-trained VOXReality models are listed, each accompanied by 

documentation in the form of “Model Card”.  

 

The VOXReality models have been already integrated in the three VOXReality applications to 

enhance user immersion. The VR Conference application has successfully implemented 25 

out of 49 user requirements, including most high and medium-priority ones. It features virtual 

avatars with dedicated cartoonish agents for interaction and navigation aids like a virtual map 

and visual cues. Additionally, it offers real-time translation in five languages with customizable 

subtitles for each speaker, enhancing the immersive experience. The Augmented Theater 

application has fulfilled all high and medium priority user requirements and one low priority, 

except those related to theatrical elements. The application can provide personalized subtitles, 

virtual effects, and background play information. The Training Assistant application 

establishing an environment with various difficulty levels, language support, and interactive 

elements like object manipulation and feedback. Some parts, like assessment metrics and 

instructional options, need completion, but the groundwork is laid for further development. 

 

In the upcoming period, the consortium will focus on planning and execution of Pilot 1I, which 

aims to test the VOXReality XR application in a real-world environment as well as to gather 

feedback from the users. The planning of the pilot will be included in the D5.1 “Pilot planning 
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and validation V1” on M18, while the execution details and results analysis will be presented 

in D5.3 “Pilot analysis & feedback V1” on M21. Moreover, we will continue to work on “once-

for-all” training concept and model optimization techniques. Our goal is to provide a tool that 

facilitates the once-for-all training method and to expand the CLI tool for inference 

optimization. This has as goal to decrease the model size and processing demands, ensuring 

efficient and effective use of AI models during the deployment to various hardware 

environments, including those with limited resources. The deployment methods and their 

accompanying guidelines will be expanded to provide more options. The XR application will 

be finalized considering both the user and technical requirements as well as the received 

feedback from Pilot 1. Any potential changes and additions will be documented in the second 

version of this deliverable with title “D4.1.2 – Model deployment analysis V2” on M32. 

 

  



 

 
 
 

 
 
 

01 MARCH 2024  DEPLOYMENT ANALYSIS V1/ 88 
 

6 References 

 

[1]  H. Cai, C. Gan, T. Wang, Z. Zhang and S. Han, “Once-for-all: Train one network and 

specialize it for efficient deployment,” arXiv preprint arXiv:1908.09791, 2019.  

[2]  A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and 

I. Polosukhin, “Attention is all you need,” Advances in neural information processing 

systems, vol. 30, 2017.  

[3]  W. Kwon, S. Kim, M. W. Mahoney, J. Hassoun, K. Keutzer and A. Gholami, “A fast 

post-training pruning framework for transformers,” Advances in Neural Information 

Processing Systems, vol. 35, pp. 24101-24116, 2022.  

[4]  S. Yu, T. Chen, J. Shen, H. Yuan, J. Tan, S. Yang, J. Liu and Z. Wang, “Unified visual 

transformer compression,” arXiv preprint arXiv:2203.08243, 2022.  

[5]  X. Wu, Z. Yao, M. Zhang, C. Li and Y. He, “XTC: Extreme Compression for Pre-trained 

Transformers Made Simple and Efficient,” Advances in Neural Information Processing 

Systems, vol. 35, pp. 3217-3231, 2022.  

[6]  J. Zhang, H. Peng, K. Wu, M. Liu, B. Xiao, J. Fu and L. Yuan, “Minivit: Compressing 

vision transformers with weight multiplexing,” in Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 2022, pp. 12145-12154. 

[7]  P. Ganesh, Y. Chen, X. Lou, M. A. Khan, Y. Yang, H. Sajjad, P. Nakov, D. Chen and 

M. Winslett, “Compressing large-scale transformer-based models: A case study on 

bert,” Transactions of the Association for Computational Linguistics, vol. 9, pp. 1061-

1080, 2021.  

[8]  H. Cai, C. Gan, T. Wang, Z. Zhang and S. Han, “Once-for-all: Train one network and 

specialize it for efficient deployment,” arXiv preprint arXiv:1908.09791, 2019.  

[9]  L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen and Q. Liu, “Dynabert: Dynamic bert 

with adaptive width and depth,” Advances in Neural Information Processing Systems, 

vol. 33, pp. 9782-9793, 2020.  

[10]  O. Zafrir, A. Larey, G. Boudoukh, H. Shen and M. Wasserblat, “Prune once for all: 

Sparse pre-trained language models,” arXiv preprint arXiv:2111.05754, 2022.  

[11]  M. Chen, H. Peng, J. Fu and H. Ling, “Autoformer: Searching transformers for visual 

recognition,” in Proceedings of the IEEE/CVF international conference on computer 

vision, 2021, pp. 12270-12280. 

[12]  VOXReality, “D3.1 - Advanced AI multi-modal for XR analyis V1,” 2023. 

[13]  VOXReality, “D2.3 - Development infrastructure and integration guidelines,” 2023. 

[14]  E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische 

mathematik, vol. 1, pp. 87-290, 1959.  

 

 

 

 

 

  



 

 
 
 

 
 
 

01 MARCH 2024  DEPLOYMENT ANALYSIS V1/ 89 
 

 



 

01 MARCH 2024  VOICE DRIVEN INTERACTION IN XR SPACES / 90 

 

 


