
   
 

  

 
 
 
 
 
 
 
 
 

 
 
 
 

VOICE DRIVEN 
INTERACTION IN XR 
SPACES 

 
Advanced AI multi-model for XR analysis 
WP3 
22-12-2023 

 
 
 
 
 
 

 
 

 

Ref. Ares(2023)8889955 - 28/12/2023



 

22 DECEMBER 2023  ADVANCED AI MULTI-MODEL FOR XR ANALYSIS / 2  
 

 
 

 
Dissemination Level: PU 

PU Public 

PP Restricted to other programme participants (Including the Commission Services) 

RE Restricted to a group specified by the consortium (Including the Commission Services) 

CO Confidential, only for members of the consortium (Including the Commission Services) 

 
Nature : RE 

PR Prototype 

RE Report 

SP Specification 

TO Tool 

OT Other 

 
 
 

  

Version 1.1 
WP WP3 
Dissemination level Public 
Deliverable lead UM 
Authors Yusuf Can Semerci, Pawel Maka, Abderrahmane Issam, 

Gerasimos Spanakis (UM), Georgios Papadopoulos, Athanasios 
Ntovas, Stefanos Biliousis, Petros Drakoulis, Konstantinos 
Konstantoudakis, Dimitris Zarpalas (CERTH), Apostolos Maniatis, 
Stavroula Bourou (SYN), Jiahuan Pei, Irene Viola, Pablo Cesar 
(NWO-I) 

Reviewers Olga Chatzifoti (MAG); Carina Pamminger (HOLO) 
Abstract This document describes the work done in the first 15 months of 

the project regarding the natural language processing models.  
Keywords Natural Language Processing, Automatic Speech Recognition, 

Neural Machine Translation, Visual Language Models, 
Conversation Agents 

License 
  
This work is licensed under a Creative Commons Attribution-No 
Derivatives 4.0 International License (CC BY-ND 4.0). See:  
https://creativecommons.org/licenses/by-nd/4.0/  

https://creativecommons.org/licenses/by-nd/4.0/


 

 
 
 

 
 
 

22 DECEMBER 2023  ADVANCED AI MULTI-MODEL FOR XR ANALYSIS / 3 
 

Version History 
Version Date Owner Editor(s) Changes to previous version 
0.1 2023-11-10 UM Yusuf Can Semerci Outline 
0.2 2023-12-07 UM Yusuf Can Semerci Related works 
0.21 2023-12-09 SYN Apostolos Maniatis Related works 
0.3 2023-12-12 UM Pawel Maka Added Sec. 2.2 
0.4 2023-12-12 CERTH Petros Drakoulis Added Sec. 2.3 
0.41 2023-12-13 SYN Stavroula Bourou Updated Related works 
0.5 2023-12-14 SYN Apostolos Maniatis Added Sec. 2.4.1 
0.6 2023-12-15 UM Abderrahmane Issam Added Sec. 2.1, Updated Sec. 2.2 
0.61 2023-12-15 UM Yusuf Can Semerci Updated Sec. 2.1 and Sec 2.2  
0.62 2023-12-19 CERTH Petros Drakoulis Updated Sec. 2.3 
0.63 2023-12-19 SYN Stavroula Bourou Updated Sec. 2.4.1 
0.7 2023-12-20 NWO-I Jiahuan Pei Added Sec. 2.4.2 
1.0 2023-12-20 UM Yusuf Can Semerci Final formatting and controls 
1.01 2023-12-22 MAG Olga Chatzifoti Internal review complete 
1.02 2023-12-22 HOLO Carina Pamminger Internal review complete 
1.1 2023-12-22 UM Yusuf Can Semerci Revisions complete 

  



 

 
 
 

 
 
 

22 DECEMBER 2023  ADVANCED AI MULTI-MODEL FOR XR ANALYSIS / 4 
 

Table of Contents  
List of Abbreviations & Acronyms ........................................................................................... 5 
List of Figures ......................................................................................................................... 7 
List of Tables ........................................................................................................................... 8 
Executive Summary ................................................................................................................ 9 
1. Introduction .................................................................................................................... 10 
2. Related Works ............................................................................................................... 11 

2.1. Automatic Speech Recognition (ASR) .................................................................... 11 
2.2. Neural Machine Translation (NMT) ........................................................................ 13 
2.3. Visual Language Models (VL) ................................................................................ 15 
2.4. Conversation Agents (CA) ...................................................................................... 17 
2.5. Evaluation Metrics .................................................................................................. 20 

3. VOXReality Natural Language Processing Models ....................................................... 23 
3.1. Automatic Speech Recognition (ASR) .................................................................... 23 
3.2. Neural Machine Translation (NMT) ........................................................................ 27 

3.2.1. Context-aware Machine Translation ................................................................ 27 
3.2.2. Robust Machine Translation ............................................................................ 33 
3.2.3. Simultaneous Machine Translation ................................................................. 35 
3.2.4. Deployment ..................................................................................................... 38 
3.2.5. Next steps ....................................................................................................... 39 

3.3. Vision-Language Models (VL) ................................................................................ 40 
3.3.1. Early models delivery ...................................................................................... 40 
3.3.2. Metrics and limitations ..................................................................................... 42 
3.3.3. The Vision (RGB)-Language case .................................................................. 44 
3.3.4. Next Steps ....................................................................................................... 51 

3.4. Conversation Agents (CA) ...................................................................................... 51 
3.4.1. VR Conference Conversation Agent ............................................................... 51 
3.4.2. AR Training Assistant ...................................................................................... 67 

4. Conclusions ................................................................................................................... 78 
References ............................................................................................................................ 79 
Appendix I: Endpoints for the ASR and NMT components ................................................... 86 
Appendix II: Endpoints for the VL components ..................................................................... 89 
Appendix III: Endpoints for the navigation assistant ............................................................. 91 
Appendix IV: Endpoints for the training assistant ................................................................. 92 
 



 

 
 
 

 
 
 

22 DECEMBER 2023  ADVANCED AI MULTI-MODEL FOR XR ANALYSIS / 5 
 

List of Abbreviations & Acronyms 
AI : Artificial Intelligence 
API : Application Programming Interface  
AR : Augmented Reality 
ARTA : Augmented Reality Training Assistant 
ASR : Automatic Speech Recognition 
BART : Bidirectional and Auto-Regressive Transformers 
BEA : Building Educational Applications 
BERT : Bidirectional Encoder Representations from Transformers 
BLEU : Bilingual Evaluation Understudy 
C4 : Colossal Clean Crawled Corpus 
CA : Conversation Agent  
CNN : Convolutional Neural Network 
COCO : Common Objects in Context 
CTC : Connectionist Temporal Classification 
DDPG : Deep Deterministic Policy Gradients 
DM : Dialogue Management 
DP : Dialogue Policy 
DST : Dialogue State Tracking 
FCE : First Certificate in English corpus 
FFN : Feed-forward Network 
GA : Grant Agreement 
GAtt : Ghost Attention 
GMM : Gaussian Mixture Model 
GPT : Generative Pre-trained Transformer 
GPU : Graphics Processing Unit 
GUG : Grammatical/Ungrammatical   
HMM : Hidden Markov Model 
IC : Image Captioning 
JFLEG : JHU FLuency-Extended GUG corpus 
JHU : John Hopkins University 
LASER3 : Language-Agnostic SEntence Representations 
LR : Learning Rate 
LCPT : Large Contrastive Pronoun Test 
LLM : Large Language Models 
LSTM : Long Short-Term Memory 
LXMERT : Language-visual Model for Efficient Representations of Transformers 
LoRA : Low-Rank Adaptation 
M2M-100 : Many-to-Many Multilingual 
METEOR : Metric for Evaluation of Translation with Explicit Ordering 
MLM : Masked Language Modeling 
MMS : Massively Multilingual Speech 
MRM : Masked Region Modeling 
MT : Machine Translation 



 

 
 
 

 
 
 

22 DECEMBER 2023  ADVANCED AI MULTI-MODEL FOR XR ANALYSIS / 6 
 

MoE : Mixture of Experts 
NAS : Neural Architecture Search 
NLG : Natural Language Generation 
NLLB : No Language Left Behind 
NLP : Natural Language Processing 
NLU : Natural Language Understanding 
NMT : Neural Machine Translation 
OC : Open Calls 
PEFT : Parameter-efficient fine-tuning 
PPO : Proximal Policy Optimization  
QLoRA : Quantized Low Raw Adaptor  
ReAct : Reason and Act 
RGB : Red-Green-Blue 
RL : Reinforcement Learning 
RLHF : Reinforcement Learning with Human Feedback 
RNN : Recurrent Neural Network 
ROUGE : Recall-Oriented Understudy for Gisting Evaluation 
RelU : Rectified Linear Unit 
SD : Scene Description 
SKS : Semantic Knowledge Similarity 
SMT : Statistical Machine Translation 
SOTA : State-of-the-art 
T5 : Text-To-Text Transfer Transformer 
TEACH : Task-driven Embodied Agents that Chat 
TEACH-EDH : TEACH - Execution from Dialogue History 
UNITER : UNiversal Image-TExt Representation 
VL : Vision-Language 
VQA : Visual Question Answering 
VR : Virtual Reality  
WER : Word Error Rate 
WP : Work Package 
XR : eXtended Reality 



 

 
 
 

 
 
 

22 DECEMBER 2023  ADVANCED AI MULTI-MODEL FOR XR ANALYSIS / 7 
 

List of Figures 
Figure 2.1. The architectures of a) Deep Speech and b) Deep Speech 2 ............................ 12 
Figure 2.2. The architectures of a) wav2vec, b) XLSR, and c) HuBERT .............................. 12 
Figure 2.3. OpenAI's Whisper architecture ........................................................................... 13 
Figure 2.4. Seq2Seq architecture ......................................................................................... 13 
Figure 2.5. The architectures of a) BART, b) T5, and c) M2M-100 ....................................... 14 
Figure 2.6. Show and Tell architecture ................................................................................. 16 
Figure 2.7. The architectures of a) LXMERT, b) VisualBERT, and c) UNITER .................... 17 
Figure 2.8. The architecture of GPT model [Radford et al., 2018] ........................................ 18 
Figure 2.9. Training process of Llama 2-Chat ....................................................................... 18 
Figure 3.1. Whisper Model with Adapter Modules ................................................................ 23 
Figure 3.2. The speech transcription endpoint ...................................................................... 25 
Figure 3.3. The speech translation endpoint ......................................................................... 25 
Figure 3.4. The context-aware speech translation endpoint ................................................. 26 
Figure 3.5. The architecture of latent grouping and latent selecting ..................................... 28 
Figure 3.6. The architecture of VOXReality context-aware MT model .................................. 28 
Figure 3.7. The terminology-constrained architecture .......................................................... 29 
Figure 3.8. BLEU scores on the OpenSubtitles2018 test set in all consortium languages. .. 33 
Figure 3.9. Training a Robust Model Using Adapters ........................................................... 34 
Figure 3.10. The architecture of wait-k adapter model ......................................................... 36 
Figure 3.11. BLEU-Average lagging results for .................................................................... 37 
Figure 3.12. The text translation endpoint ............................................................................ 38 
Figure 3.13. The context-aware translation endpoint ............................................................ 38 
Figure 3.14 The context-aware terminological translation endpoint ..................................... 39 
Figure 3.15 The terminology configuration endpoint ............................................................. 39 
Figure 3.16. Early endpoints for a) image captioning, b) visual question answering ............ 41 
Figure 3.17. The example image with a flower in a vase and a kitten next to it ................... 43 
Figure 3.18. Example RGB and Depth image that includes a person and a fire hydrant ..... 46 
Figure 3.19. The architecture with ViT encoder and GPT2 decoder for the IC task ............. 48 
Figure 3.20. Progression across training epochs of a) standard evaluation metrics, ........... 49 
Figure 3.21. Data distribution across categories ................................................................... 53 
Figure 3.22. Conference agent workflow .............................................................................. 55 
Figure 3.23. Illustration of LoRA during and after training .................................................... 61 
Figure 3.24. Training and validation loss per epoch ............................................................. 62 
Figure 3.25. The intend and destination recognition endpoint .............................................. 66 
Figure 3.26. The response generation endpoint ................................................................... 66 
Figure 3.27. Autonomous agent powered by large language models .................................. 67 
Figure 3.28. The workflow of ARTA ...................................................................................... 68 
Figure 3.29. The illustration of conversational ReAct walkthrough ....................................... 69 
Figure 3.30. Interactive information flow between XR test application and AI agent ............ 69 
Figure 3.31. Comparison of full fine-tuning, LoRA, and QLoRA ........................................... 70 
Figure 3.32. Examples of TEACH-EDH dataset ................................................................... 71 
Figure 3.33. Examples of VOX-ARTA-LEGO dataset ........................................................... 72 
Figure 3.34. The learning curve of Llama-2-7b-chat-hf model finetuning on ........................ 74 
Figure 3.35. Interactive WebSocket API ............................................................................... 77 
 



 

 
 
 

 
 
 

22 DECEMBER 2023  ADVANCED AI MULTI-MODEL FOR XR ANALYSIS / 8 
 

List of Tables 
Table 3.1. Whisper Size Variants .......................................................................................... 24 
Table 3.2. Hyperparameters of Whisper Finetuning ............................................................. 24 
Table 3.3. WER Results of Finetuning vs. Adapter finetuning of Whisper ............................ 24 
Table 3.4. MMS and Whisper Comparison Using Average WER on 54 Languages ............ 26 
Table 3.5. The hyper-parameters of all models trained on IWSLT 2017 dataset ................. 31 
Table 3.6. Results of the models trained on the IWSLT 2017 with EN-DE dataset .............. 31 
Table 3.7. Results of the models trained on the IWSLT 2017 with EN-FR dataset .............. 32 
Table 3.8. The hyper-parameters of the terminology-constrained model ............................. 32 
Table 3.9. Accuracy of the models on the ContraPro contrastive dataset ............................ 33 
Table 3.10. The hyper-parameters of the robust MT model ................................................. 35 
Table 3.11. A Comparison of Finetuning and Adapter based finetuning on JFLEG-es ........ 35 
Table 3.12: Hyperparameters of the Simultaneous Machine Translation Models ................ 36 
Table 3.13: Evaluation scores on the test-set and training loss across training epochs ...... 49 
Table 3.14. Pearson correlation coefficients between all evaluation metrics. ...................... 50 
Table 3.15. Experimental results of the NLU model ............................................................. 54 
Table 3.16. Evaluation of sentence-transformers fine-tuning process with sentence similarity
 .............................................................................................................................................. 63 
Table 3.17. Evaluation of navigation agent before and after fine-tuning .............................. 64 
Table 3.18. Evaluation of intent recognition agent before and after fine-tuning ................... 65 
Table 3.19. Evaluation of destination recognition agent before and after fine-tuning ........... 65 
Table 3.20. Descriptions of the functions for the XR tools in the test application ................. 70 
Table 3.21. Statistics of TEACH-EDH and VOX-ARTA-LEGO datasets .............................. 72 
Table 3.22. Evaluation results on TEACH-EDH and VOX-ARTA-LEGO dataset ................. 74 
 
  



 

 
 
 

 
 
 

22 DECEMBER 2023  ADVANCED AI MULTI-MODEL FOR XR ANALYSIS / 9 
 

Executive Summary 
 
This document corresponds to the deliverable D3.1 - Advanced AI multi-model for XR 
analysis, of work package 3 (WP3) and describes the work done in the first 15 months of the 
project regarding the natural language processing (NLP) models.  
 
In VOXReality, the natural language processing models are developed for the following tasks: 
1) Automatic speech recognition (ASR), 
2) Machine translation (MT), 
3) Image captioning (IC) and scene description (SD), 
4) Visual question answering (VQA), 
5) Conversation agents (CA) for navigation and training assistance 
 
The document is divided into four chapters:  
 
Chapter 1 provides a brief introduction to the WP3 tasks and to this deliverable.  
 
Chapter 2 describes the background knowledge required to understand the VOXReality NLP 
models and the related works from the literature for each of the five tasks listed above. 
 
Chapter 3 presents the models developed for each of the five tasks listed above. Section 3.1 
describes the work performed regarding automatic speech recognition and the initial results 
obtained from the evaluation of the performance of the models trained, Section 3.2 describes 
the context-aware machine translation, simultaneous machine translation and robust machine 
translation models and their performances with benchmark datasets, Section 3.3 describes 
the models implemented for spatial image captioning, spatial visual question answering, and 
spatial scene description, and Section 3.4 presents the work performed on developing the 
navigation assistant conversation agent and the training assistant conversation agent. 
 
Chapter 4 summarizes the conclusions obtained with this deliverable and with the work done 
during the first 15 months of the project and provides a prospect of further work regarding the 
NLP model implementations and modifications.  
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1. Introduction 
 
The eXtended Reality (XR) technologies, specifically Virtual Reality (VR) and Augmented 
Reality (AR), offer individuals immersive environments where they can engage with and 
manipulate both physical and virtual environments in multidimensional ways, presenting 
considerable opportunities for various sectors like education, training, collaboration, 
entertainment and health. The technologies that facilitate this immersive experience offer 
ways to engage and interact with these virtual or augmented environments through hand-held 
point and click interfaces (e.g., controllers) or data driven AI-based hand tracking. However, 
these technologies are limited for natural interactions, especially for human-to-human 
communication since human-to-human interaction is mainly driven by language (verbal 
communication) and enhanced with gesture-based physical cues. Furthermore, the rapid 
spread of the COVID-19 pandemic accelerated the progress of digital meeting platforms and 
digital assistants. As a result, human communication and interaction underwent a notable shift 
toward the digital medium. The ability to organize events, engage in meetings with colleagues, 
and conduct training activities became feasible through digital platforms in the midst of the 
pandemic allowing individuals all around the world to be connected. Moreover, recent 
advancements in Artificial Intelligence (AI) technologies have further elevated the interaction 
with machines, enabling users to seamlessly employ natural language in their day-to-day 
activities. These observations underscore the need for a coordinated strategy in implementing 
context-aware, multilingual, visually grounded tools to enhance natural communication among 
humans and between humans and machines on digital platforms such as XR environments. 
 
One of the main objectives of VOXReality is to implement natural language processing models 
which are pre-trained, publicly available, optimized, multilingual, visually grounded and 
knowledgeable of the domain-specific needs of applications in XR environments. To this end, 
the VOXReality consortium invests in research and development activities in WP3 to provide 
NLP models for automatic speech recognition, machine translation, visual question answering, 
visual captioning, spatial scene description, and conversation agents for navigation and 
training assistance in 4 tasks. 
 
“Task 3.1 - VOXReality Audio processing” focuses on the algorithms, models and tools to 
process audio streams or files for the automatic speech recognition, “Task 3.2 - VOXReality 
Multilingual translation” is responsible for the implementation, training and fine-tuning of the 
machine translation models, “Task 3.3 - Vision and language based XR models” implements 
visual language (VL) models that can answer questions about visual cues, describe an image 
by summarizing the content of the image (caption), and describe a scene with spatial 
consideration, and “Task 3.4 - Context aware generative dialogue system” is responsible for 
the implementation of two generative conversation agents that are adapted to two different 
tasks: indoor navigation and machine assembly training. 
 
The technical work described in this document is the work performed in all four tasks (T3.1, 
T3.2, T3.3, and T3.4) of WP3 until the end of the 15th month of the VOXReality project. 
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2. Related Works 
 
Natural Language Processing (NLP) is the study and development of algorithms and 
computational models that enable machines to understand, interpret, and generate human 
language. Early NLP research focused on the development of rule-based systems and 
symbolic approaches that relied on predefined grammatical rules and linguistic structures to 
analyse and generate text. However, these approaches faced limitations in handling the 
complexity and variability of natural language. The shift towards statistical methods, 
probabilistic models and machine learning techniques enabled the NLP systems to learn from 
data and adapt to linguistic patterns facilitating more robust language processing capabilities. 
Recent advancements in machine learning, deep learning, the availability of large datasets 
and more efficient and powerful hardware setups revolutionized the NLP.  
 
Recent years have seen the rise of transformer-based models, such as BERT (Bidirectional 
Encoder Representations from Transformers) [Devlin et al., 2018] and GPT (Generative Pre-
trained Transformer) [Radford et al., 2018], which have demonstrated remarkable 
performance in a wide range of NLP tasks. The following sections present the evolution of 
approaches for the NLP tasks that VOXReality is investing in, namely, automatic speech 
recognition, machine translation, visual language models, and conversation agents. 

2.1. Automatic Speech Recognition (ASR) 
Automatic Speech Recognition (ASR) focuses on the development of systems capable of 
transcribing spoken language into text. The approaches to ASR evolved from early rule-based 
approaches to the current state-of-the-art methods driven by deep learning and transformers. 
Early systems relied heavily on handcrafted rules and linguistic models that match acoustic 
features with phonetic units [Jelinek, 1976]. Gaussian Mixture Models (GMMs) and Hidden 
Markov Models (HMMs) were utilized to develop early systems that were capable of handling 
limited vocabulary tasks for specific domains. HMMs were used to handle the temporal 
dynamics of speech, while GMMs were used to model the probability distribution of acoustic 
features [Rabiner, 1989]. The first revolutionary shift happened with the advancements in 
machine learning methodologies. Deep Speech [Hannun et al, 2014] and Deep Speech 2 
[Amodie et al, 2016] are two of the most prominent examples of the ASR models introduced 
in the era of rise of machine learning algorithms in NLP. 
 
Deep Speech employs an end-to-end neural network architecture (Figure 2.1a) with 
connectionist temporal classification (CTC) loss to train an NLP model, where acoustic 
features, such as spectrograms, are mapped to a character sequence without the need for 
phonetic or linguistic modelling and without the need for aligned input-output pairs. The CTC 
loss, increased number of parameters (model size) and increased amount of data utilized to 
train the model contributed to the success of the model in achieving the state-of-the-art at the 
time of publication. Deep Speech 2 builds upon the previous iteration by introducing the 
Recurrent Neural Network (RNN) approach (Figure 2.1b), specifically Long Short-Term 
Memory (LSTM), to handle long-term dependencies in the sequential data (speech), and the 
batch normalization, which normalizes the inputs to a layer within a mini batch, addressing 
issues like vanishing or exploding gradients. Furthermore, Deep Speech 2 introduces the 
multilingual capabilities of deep neural network architectures and surpasses its predecessor 
in achieving the state-of-the-art. 
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Figure 2.1. The architectures of a) Deep Speech and b) Deep Speech 2 

 
The introduction of attention mechanisms and transformer models [Vaswani et al., 2017] 
accelerated the NLP research tremendously, especially with the success of models such as 
BERT. Recent ASR approaches employ speech representation models such as wav2vec 
[Baevski et al., 2020], XLSR [Conneau et al., 2020] and HuBERT [Hsu et al., 2021], which are 
three of the most prominent speech models benefited from the methodologies introduced with 
attention mechanisms, transformers and BERT. All three models are trained with a self-
supervised learning approach where a model is trained on a task generated from its own input 
data that allow the model to learn meaningful representations without relying on externally 
labelled datasets. wav2vec introduces a framework (Figure 2.2a) that leverages contrastive 
learning, a self-supervised learning approach where a model is trained to maximize the 
similarity between augmented views of the same instance and minimize the similarity between 
views of different instances, while XLSR introduces the functionality of multilingual 
quantization (Figure 2.2b) to the contrastive learning approach, where the aim is to capture 
the shared phonetic representations across languages. HuBERT, on the other hand, employs 
the masked language modeling (MLM) approach (Figure 2.2c), where random tokens in a 
given language sequence are masked and the model is trained to predict the masked tokens 
based on the surrounding unmasked tokens, to capture contextual dependencies in the 
speech signal. 

 
Figure 2.2. The architectures of a) wav2vec, b) XLSR, and c) HuBERT 

 
One of the most recent advancements in ASR is Whisper [Radford et al., 2023], which is an 
end-to-end model based on transformers and utilizes log-Mel spectrogram of audio inputs. 
Whisper is trained to predict textual outputs with a multi-task approach where these tasks 
include language identification, multilingual speech transcription, and to-English speech 
translation (Figure 2.3). In the pre-training phase, the model is trained on a large dataset using 
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the MLM approach. In the fine-tuning phase, the model is further trained on a smaller labelled 
dataset using supervised learning to improve its performance on specific tasks. 

 
Figure 2.3. OpenAI's Whisper architecture 

2.2. Neural Machine Translation (NMT) 
Machine Translation (MT) refers to the automatic text or speech translation from one language 
to another using computational methods. Similar to the ASR evolution, MT transitioned from 
rule-based methodologies to transformer-based, deep neural network methodologies over the 
years. Early methods utilized linguistic rules crafted by linguists and dictionaries to translate 
text [Bar-Hillel, 1951]. The first automated machine translation tools were developed with the 
introduction of Statistical Machine Translation (SMT) approaches such as Moses [Koehn et 
al., 2007]. SMT models, especially Moses, utilize statistical alignment models to align words 
or phrases in source and target corpora and decoding strategies such as beam search or cube 
pruning. 
 
The first breakthrough from the early statistical methods occurred with the introduction of deep 
learning techniques and the emergence of the Neural Machine Translation (NMT) field, which 
is the approach to machine translation that utilizes neural network architectures, particularly 
sequence-to-sequence models. In the first study that mentions NMT [Sutskever et al., 2014], 
the model proposed, called Seq2Seq, consists of an RNN encoder that processes the input 
sequence into a fixed-size vector, and an RNN decoder that generates the output sequence 
based on this vector. This architecture (Figure 2.4) paved the way for models that assign a 
sequence of data to a fixed size vector, which revolutionized the MT field.  
 

 
Figure 2.4. Seq2Seq architecture1 

 
1 https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 
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The latest breakthrough occurred with the introduction of attention mechanisms, transformers 
and BERT and GPT architectures. Recent models such as BART [Lewis et al., 2019], T5 
[Raffel et al., 2020], M2M-100 [Fan et al., 2021], and NLLB [Costa-jussà et al., 2022] all 
benefited from this breakthrough and they were considered to be the state-of-the-art at the 
time of their publication. BART (Bidirectional and Auto-Regressive Transformers) is an 
encoder-decoder model (Figure 2.5a), where the encoder is trained in a bidirectional manner 
using MLM objective with a denoising approach, meaning the input sequence is randomly 
masked, the encoder is trained to reconstruct the original sequence from the corrupted one 
and the decoder is trained using an autoregressive approach, meaning the decoder generates 
one token at a time and the next token is generated based on the previously generated token. 
T5 (Text-To-Text Transfer Transformer) is an encoder-decoder structure (Figure 2.5b), where 
the model is pretrained on a large corpus using unsupervised learning with a denoising 
autoencoder objective and introduces task-specific prefixes during training and fine-tuning that 
enable the model to handle a plethora of down-stream tasks such as translation. M2M-100 
(Many-to-Many Multilingual) is a many-to-many multilingual transformer-based model (Figure 
2.5c) trained on a large multilingual corpus, which includes parallel data for translation tasks 
in a task-agnostic manner leveraging self-attention mechanisms to capture contextual 
relationships in the input sequence.  NLLB (No Language Left Behind) is a multilingual 
transformer-based model, which introduces the Sparsely Gated Mixture of Experts approach 
to the network structure that is constructed based on another model called LASER3 
(Language-Agnostic SEntence Representations) [Heffernan et al., 2022]. Sparsely Gated 
Mixture of Experts models activate a subset of model parameters as opposed to all parameters 
in traditional dense models. 

 
Figure 2.5. The architectures of a) BART, b) T5, and c) M2M-100 

 
Various NMT studies focus on specific tasks for machine translation to tackle the challenges 
of the multilingual general NMT models. VOXReality focuses on three of these major 
challenges in NMT research: a) Context-aware Machine Translation, which refers to the 
integration of contextual information, such as surrounding context or terminology, into the 
process of machine translation to enhance the accuracy of translated text, especially to 
minimise the errors coming from ambiguities in the source text, b) Robust Machine 
Translation, which refers to the machine translation systems that can produce accurate and 
reliable translations across a variety of challenging conditions, including linguistic variations 
and noisy inputs, and c) Simultaneous Machine Translation, which refers to the machine 
translation systems that can translate in real-time as the source text is being generated, 
without waiting for the entire input to be available. 
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In Context-aware Machine Translation, the state-of-the-art architectures can be broadly 
categorized into single-encoder and multi-encoder approaches. In single-encoder 
architectures, the context sentences are concatenated with the current sentence and 
processed as a long sequence by a single encoder [Sun et al., 2020]. In multi-encoder 
architectures, the context sentences are processed by a separate encoder than the current 
sentence and may involve sharing parameters of encoders to reduce the number of 
parameters needed to be trained [Huo et al., 2020]. In multi-encoder approaches the features 
obtained from the encoders can be fused in multiple ways, such as by concatenation before 
passing the information to the decoder or by using cross-attention mechanisms. 
 
In Robust Machine Translation, the methodologies can be categorized into two main 
approaches: 1) data augmentation and domain adaptation and 2) adversarial training. In data 
augmentation approaches, the model is exposed to a diverse set of linguistic patterns through 
techniques such as back-translation, multi-domain training, and fine-tuning on in-domain 
and/or out-of-domain data [Xie et al., 2020]. In adversarial approaches, the model is trained 
to produce accurate results even in the presence of adversarial and noisy inputs using 
techniques such as regularization that penalize sensitivity to input variations or employing 
adversarial training to reduce the effect of domain shift [Miyato et al., 2016]. 
 
In Simultaneous Machine Translation, the methodologies employed can be categorized into 
fixed-wait, multiple-wait and adaptive-wait approaches. In fixed wait architectures, the models 
wait for k amount of tokens to be received to start the translation process [Ma et al., 2018]. In 
multiple-wait architectures, the model is trained to support a set of k values and can be utilized 
with one of these k values by using methods such as mixture-of-experts to wait for tokens to 
start translating [Zhang & Feng, 2021]. In the adaptive-wait architectures, the model is trained 
to decide when to translate and when to wait for more tokens by using methods such as 
monotonic multihead attention. The models trained with this approach also have the capability 
to adapt to different wait (k) values [Ma et al., 2019]. 

2.3. Visual Language Models (VL) 
Visual language models refer to the neural network models that aim to jointly represent and 
understand cross-modal information in images and text. Early examples of visual language 
understanding approaches followed traditional computer vision methods and hand-crafted 
features and utilized separate traditional models for visual content and the natural language. 
 
The introduction of Convolutional Neural Networks (CNNs), RNNs and large-scale datasets 
such as Common Objects in Context (COCO) [Lin et al., 2014] paved the way for data-driven 
approaches such as Show and Tell [Vinyals et al., 2015], which utilizes CNNs for image 
feature extraction and LSTMs for natural language generation (Figure 2.6). 
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Figure 2.6. Show and Tell architecture 

 
The latest breakthrough occurred with the introduction of attention mechanisms and 
transformer architectures. The most prominent models that utilize these methods are called 
LXMERT [Tan & Bansal, 2019], VisualBERT [Li et al., 2019] and UNITER [Chane et al., 2020]. 
These models are capable of a plethora of visual language tasks, such as image captioning 
and visual question answering, which are the tasks VOXReality is also investing in. 
 
LXMERT (Language-visual Model for Efficient Representations of Transformers) is a visual 
language model that utilizes a transformer-based architecture (Figure 2.7a), a vision-answer 
bi-attention mechanism that focuses on relevant image regions and words in the textual 
context, and a positional encoding for the vision modality to capture the spatial relationships, 
and learns joint representations of both modalities during training for better understanding of 
the relationship between visual and textual context.  
 
VisualBERT is a visual language model that extends the BERT architecture (Figure 2.7b) and 
it is pre-trained with an MLM objective and a sentence-image prediction objective using the 
COCO dataset. It also introduces a set of visual embeddings: a visual feature representation 
of the bounding region, a segment embedding to indicate that the representation is an image 
embedding. and a position embedding to align words and bounding regions.  
 
UNITER (UNiversal Image-TExt Representation) is a visual language model that employs a 
transformer-based architecture (Figure 2.7c) and is pre-trained using four objectives: MLM, 
Masked Region Modeling (MRM), where regions in an image are masked and the model's 
objective is to predict the masked region, Image-Text Matching, where the objective of the 
model is to predict if the given text and the image region is a match or not, and Word-Region 
Alignment, where the aim is to align words and image regions using a predetermined loss 
function instead of letting the model determine the alignment implicitly. In UNITER, the MLM 
objective is conditioned on the observation of the full text and the MRM objective is conditioned 
on the full image instead of the commonly used approach of applying joint random masking to 
both modalities.  
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Figure 2.7. The architectures of a) LXMERT, b) VisualBERT, and c) UNITER 

 

2.4. Conversation Agents (CA) 
Conversation agents (CAs), commonly known as chatbots, are systems designed to simulate 
human-like conversations with users, often through text or voice-based interfaces. The history 
of CA began with the creation of ELIZA [Weizenbaum, 1966], a program that mimicked a 
Rogerian psychotherapist by using pattern matching and substitution methodology. This was 
followed by PARRY [Kochen, 1980], another milestone that simulated a person with paranoid 
schizophrenia.  
 
The advancement of CAs received a considerable boost with the advent of deep learning 
technologies. Notably, the introduction of Seq2Seq [Sutskever et al., 2014] marked a major 
breakthrough in this evolution, significantly enhancing the capabilities and complexity of 
conversational agents. This model was primarily designed for machine translation but was 
quickly recognized for its potential in creating conversational agents. The significant 
advancements in CA technology took a big step forward with the introduction of the attention 
mechanism and transformer-based models [Vaswani et al., 2017]. Transformer models are 
exceptionally efficient in handling sequential data and are particularly adept at capturing the 
intricacies of human language, making them ideal for creating highly sophisticated 
conversational agents.  
 
Meanwhile, OpenAI's GPT (Generative Pre-trained Transformer) [Radford et al., 2018] series, 
including GPT-3 [Brown et al., 2020], utilized an architecture (Figure 2.8) that is characterized 
by its use of self-attention mechanisms, enabling the models to weigh the importance of each 
part of the input data in relation to the rest, a crucial factor in understanding and generating 
coherent, contextually relevant text. The combination of a transformer backbone with 
extensive pre-training and fine-tuning underpins the remarkable capabilities of GPT models in 
generating human-like, context-aware text. 
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Figure 2.8. The architecture of GPT model [Radford et al., 2018] 

 
Moreover, the Llama-2 [Touvron et al., 2023] model represents a significant advancement in 
the field with the utilization of the Ghost Attention (GAtt) method, which addresses the loss of 
context in multi-turn conversations. This method artificially concatenates the instruction to all 
user messages, leading to context-rich dialogues and improved attention. Furthermore, 
Llama-2 forms the backbone of instruction-tuned CA Llama2-Chat (Figure 2.9), which applies 
pretraining on the Llama 2 model using publicly available online sources and a further 
supervised fine-tuning. The model was then further refined through iterative processes using 
Reinforcement Learning with Human Feedback (RLHF) methodologies, including rejection 
sampling and Proximal Policy Optimization (PPO) [Schulman et al., 2017]. Crucially, 
throughout the RLHF stage, there was a parallel accumulation of iterative, reward modeling 
data, ensuring the reward models remained within distribution and aligned with the model 
enhancements. The Llama2-Chat models are available in three versions: 7 billion, 13 billion, 
and 70 billion parameters, each tailored to different levels of complexity and conversational 
requirements. 
 

 
Figure 2.9. Training process of Llama 2-Chat 

 
The conversation agents can be classified into two categories: task-oriented conversational 
agents, which focus on specific functions, and general conversational agents, designed for 
more dynamic and wide-ranging interactions. VOXReality focuses on the development of task-
oriented conversational agents, specifically tailored to the requirements of the virtual 
conference and machine assembly training use cases. The agent in virtual conference use 
case is being developed with a focus on navigation assistance, providing detailed information 
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about the conference program and facilitating interactions within the trade show, and the agent 
in machine assembly training use case focuses on the conversational training assistant. The 
task oriented CAs include three main components: Natural Language Understanding (NLU), 
Dialogue Management (DM), and Natural Language Generation (NLG). 
 
1. Natural Language Understanding (NLU): NLU is the component responsible for 
extracting the meaning from user inputs in natural language. It serves as the bridge between 
the user's query and the agent’s ability to comprehend and respond effectively.  
 
2. Dialogue Management (DM): Following NLU's extraction of user intent and context, the 
extracted information is passed on to the DM, which is the component responsible for 
orchestrating the conversation and deciding how the agent should respond based on the 
user's input and the bot's task or purpose. It acts as the decision-maker, determining the 
appropriate course of action within the conversation flow. Dialogue Management is often split 
into two sub-components: Dialogue State Tracking and Dialogue Policy. 

 
a) Dialogue State Tracking (DST): DST focuses on keeping track of the current state of the 
conversation by maintaining a record of all relevant information and context, including user 
queries, preferences, and any previous interactions. DST employs techniques such as slot 
filling to extract key pieces of information from user messages.  
b) Dialogue Policy (DP): DP is responsible for deciding the agent’s actions and responses 
based on the dialogue state using strategies and algorithms for selecting the most suitable 
response or action at each turn of the conversation. DP uses the information provided by DST 
to determine the next steps in the dialogue. DP ensures that the agent’s responses are 
coherent, relevant, and aligned with the user's goals. 
 
3. Natural Language Generation (NLG): NLG is responsible for converting structured data 
and decisions generated by the DM into human-readable and natural-sounding responses by 
generating text responses that are coherent, contextually relevant, and grammatically correct.  
 
In the context of task-oriented CAs, it's essential to highlight that the utilization of state-of-the-
art transformer-based models like T5, BERT and similar ones can be advantageous for all the 
components. T5 has reimagined NLP tasks by framing them uniformly as text-to-text 
problems, facilitating a more integrated and coherent approach to a variety of tasks, including 
translation, summarization, and question answering. T5 has undergone comprehensive pre-
training on the “Colossal Clean Crawled Corpus” (C4)2, which is instrumental in its ability to 
generate and understand human-like text. The model is available in several scalable variants, 
each tailored for different computational needs and performance requirements: 
• T5-Small: Optimized for limited computational resources, ideal for mobile or edge 

computing. 
• T5-Base: A balanced choice for general-purpose NLP tasks, offering a good compromise 

between efficiency and performance. 
• T5-Large: Geared towards more complex NLP tasks, it delivers higher accuracy due to its 

larger size. 

 
2 https://github.com/google-research/text-to-text-transfer-transformer#c4 
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• T5-3B and T5-11B: These are the largest configurations, containing billions of 
parameters, and are typically used for high-end NLP research and applications with 
substantial computational resources. 

 
However, DP often takes a different approach; instead of utilizing pre-trained models, DP 
commonly relies on Reinforcement Learning (RL) methods. PPO is a popular RL algorithm 
used for DP, which optimizes the policy of the agent by iteratively collecting data and improving 
the policy to maximize rewards. Another algorithm, Deep Deterministic Policy Gradients 
(DDPG) [Lillicrap et al., 2017], is used when the action space is continuous since the aim of 
the algorithm is to learn deterministic policies that map states to specific actions, making it 
suitable for precise control in task-oriented dialogues.  
 
In recent advancements, the end-to-end approach for task-oriented dialogue agents, such as 
GPT-3 and Llama-2, has gained significant traction, offering a more streamlined and 
integrated methodology. This approach treats the entire dialogue process as a single holistic 
task, which includes understanding user intent, managing the dialogue, and generating 
responses. Unlike traditional models that handle these components separately, the end-to-
end approach process and respond to user inputs directly. GODEL [Peng et al., 2022] is 
another end-to-end model that addresses the challenges of task-oriented dialogues.  

2.5. Evaluation Metrics 
There are three evaluation metrics widely adopted across the NLP field: BLEU [Papineni et 
al., 2002], ROUGE [Lin et al., 2004] and METEOR [Banerjee et al., 2005]. 
 
BLEU (Bilingual Evaluation Understudy) is the most widely used metric for evaluating the 
output of machine translation systems with human-generated reference translations. It 
operates by comparing n-grams (contiguous sequences of n items, typically words) between 
the candidate (machine-generated) and reference (human-generated) translations. The 
precision of n-grams in the candidate translation is measured by how many of them overlap 
with n-grams in the reference translations. While this concept is sound for long translations, it 
has a tendency to over-rate short translations. In an effort to overcome this, Modified Precision 
is introduced, which considers the maximum number of times a particular n-gram appears in 
any single reference translation. This is done to prevent the metric from being overly optimistic 
about short and repetitive translations. Another measure to that direction is that it includes a 
brevity penalty if the length of the candidate translation is less than the length of the reference 
translations. 
 
BLEU computes precision scores for different n-gram lengths (usually up to 4-grams), and 
then combines them using a weighted geometric mean. The weights are usually equal, but 
some variations may assign different weights. The final score is calculated by multiplying the 
combined precision by the brevity penalty. The brevity penalty is typically the exponential of 1 
minus the ratio of the length of the reference translation to the length of the candidate 
translation. Its values range from 0 to 1, with 1 indicating a perfect match between the 
candidate and reference translations. 
 
A notable limitation of BLEU is that it does not explicitly consider word order or capture 
semantic nuances and a high BLEU score doesn't necessarily mean the translation is of high 
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quality in all aspects. It doesn't capture semantic meaning or fluency and might favour 
translations that are close to the references but not necessarily correct or natural sounding. 

 
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a metric commonly used for 
evaluating the quality of automatic summarization and machine translation outputs. It 
assesses the similarity between a generated summary and one or more reference summaries 
by measuring the overlap of n-grams (contiguous sequences of n items, usually words) and 
other units of text. There are several variants of ROUGE metrics, such as ROUGE-N, ROUGE-
L, ROUGE-Lsum, ROUGE-W, ROUGE-S, ROUGE-SU and ROUGE-M. Each variant focuses 
on different aspects of similarity: 
 

• ROUGE-N (Unigram, Bigram, etc.): Measures overlap of n-grams between the system 
summary and the reference summary. ROUGE-1 considers unigrams (single words), 
ROUGE-2 considers bigrams (two consecutive words), and so on. 

• ROUGE-L (Longest Common Subsequence): Measures the longest common 
subsequence of words between the system and reference summaries. It is less 
sensitive to word order than n-gram-based metrics. 

• ROUGE-Lsum: Similar to ROUGE-L but considers multiple occurrences of the same n-
gram in the reference.  

• ROUGE-W (Weighted Overlap): Considers the overlap of weighted words. It assigns 
higher weights to important words, giving more importance to content words. 

• ROUGE-S (Skip-Bigram): Measures the overlap of pairs of words that have one or 
more words in between them. It helps capture some word order information. 

• ROUGE-SU (Skip-Bigram with Unigram): An extension of ROUGE-S that considers 
unigrams as well. It combines unigrams and skip-bigrams to capture more information. 

• ROUGE-M (ROUGE for Multigrams): Computes precision, recall, and F1 score for 
various lengths of n-grams. 

 
ROUGE scores range from 0 to 1, where a higher score indicates better similarity between 
the generated and reference summaries. The basic calculations in all variants involve counting 
the number of overlapping units (n-grams, words, or sub-sequences) between the generated 
summary and the reference summary, based on the chosen metric (n-grams, longest common 
subsequence, etc.). The precision, recall, and F1 score are then computed based on these 
counts: 

 
• Precision: Proportion of overlapping units in the generated summary with respect to 

the total number of units in the generated summary. 
• Recall: Proportion of overlapping units in the generated summary with respect to the 

total number of units in the reference summary. 
• F1 Score: Harmonic mean of precision and recall. 

 
ROUGE, like all metrics described here, has innate limitations that need to be taken into 
consideration. Firstly, it is case-sensitive, so "cat" and "Cat" would be treated as different units. 
In order to alleviate this, case folding may need to be applied. Also, punctuation and stop-
words (common words like "the," "and," etc.) are often excluded or given less importance. 
Additionally, ROUGE metrics may be sensitive to summary length. Extremely short or long 
summaries can affect the evaluation. It's important to ensure that the evaluation considers the 
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length of the summaries appropriately. Finally, it should be noted that it is upon us to choose 
the correct variant of ROUGE, better suited to our case. For example, ROUGE-N is sensitive 
to word order, while ROUGE-L is more lenient in this regard. Also, ROUGE can be applied at 
different levels, including word level, sentence level, or document level. The level chosen 
depends on the granularity of evaluation desired. 
 
METEOR (Metric for Evaluation of Translation with Explicit Ordering) is another metric used 
for evaluating the quality of machine translation outputs and was designed to address some 
of the limitations of BLEU and ROUGE. It incorporates explicit word matching, stemming, 
synonymy, and word order into its evaluation process. The evaluation process starts by 
aligning words in the candidate (system-generated) translation with words in the reference 
translation. It considers exact matches, stemming (reducing words to their root form), and 
synonymy (using WordNet) to find matches. Then, it computes precision, recall, and F1 score 
based on the number of matched unigrams, bigrams, and synonym pairs. These measures 
are calculated separately and then combined using a harmonic mean to get an overall score. 
METEOR incorporates a penalization mechanism for overgeneration (when the system 
generates more words than necessary) and undergeneration (when the system generates 
fewer words than necessary). These penalties are incorporated into the score to encourage 
more accurate translations. Another feature of it is that it employs a more flexible alignment 
approach compared to some other metrics. It allows for multiple reference words to be 
matched to a single candidate word and vice versa. This helps handle variations in expression. 
 
METEOR provides scores for various components, such as unigram precision, unigram recall, 
precision for stemmed unigrams, recall for stemmed unigrams, synonym precision, synonym 
recall and penalty terms for overgeneration and undergeneration. It allows for different 
components to be weighted differently, based on their importance. This enables users to 
customize the metric according to their priorities. The final score is a combination of the 
individual component scores, with each component weighted according to user preferences. 
The flexibility of METEOR in handling stemming, synonymy, and various language-specific 
nuances makes it suitable for evaluating translations in a wide range of languages. It has 
shown good correlation with human judgment in various machine translation evaluations, 
making it a quite reliable metric for automatic assessment. Of course, like any automatic 
evaluation metric, it might not fully capture the intricacies of human judgment. There are cases 
where a translation may be technically correct but might not align perfectly with reference 
translations. 
 
While METEOR is a comprehensive metric for the evaluation of machine translation outputs, 
it also has some limitations and considerations to be aware of. It can be sensitive to 
preprocessing choices, such as tokenization and stemming. Small variations in preprocessing 
can lead to differences in the evaluation results. Also, it relies on WordNet for synonym 
matching. While WordNet is a valuable resource, its coverage and accuracy may vary across 
different languages and domains. In some cases, it may not capture all relevant synonyms. 
Most notably though, METEOR places a strong emphasis on exact matching. While it 
considers stemming and synonyms, deviations from the reference translations still result in 
lower scores even if the meaning is preserved, mainly rooted to the fact that it takes word 
order into account. Lastly, in practice tuning METEOR for optimal performance can be 
challenging due to its multiple parameters and components. The need for careful parameter 
tuning makes it less straightforward to use. 
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3. VOXReality Natural Language Processing Models 

3.1. Automatic Speech Recognition (ASR) 
Automatic Speech Recognition is crucial to the VOXReality Pipeline. We found that ASR 
models underperform on Greek language, and we worked on improving Whisper on Greek 
through finetuning and using Adapter modules. 
 
Whisper [Radford et al., 2023] is a Multilingual Multi-task model that can perform ASR, 
translation into English and Language Identification. We integrate Whisper into our pipeline 
because of its robustness to speech variations that comes with training on large amounts of 
weakly supervised data. Although Whisper performs really well on high resource languages, 
it underperforms on low or medium resource languages like Greek, but the representations 
learned during the Multi-task pretraining can still be useful for finetuning a better model for 
Greek. 
 
We use adapters [Rebuffi et al., 2017] [Houlsby et al., 2019] for efficient finetuning of the 
Whisper model. Whisper architecture is a normal transformer-based encoder-decoder 
architecture, therefore, we plugin adapter modules after the feed forward network of both the 
encoder and the decoder. We insert one adapter module per layer. The adapter architecture 
[Bapna et al., 2019] we use is composed of layer normalization, a linear layer that lowers the 
dimension of the input (down projection), and a linear layer that brings the input back to its 
original dimension (up projection). The two linear layers are separated by a Rectified Linear 
Unit (RELU). The architecture of the model that utilizes adapter modules is illustrated in Figure 
3.1.  

 
Figure 3.1. Whisper Model with Adapter Modules 

Results 
Whisper comes in multiple variants that can suit different quality and size requirements. As 
shown in Table 3.1, these models differ in terms of their number of parameters, and thus their 
performance is also different. The number of parameters can have implications on the latency 
and the amount of memory required to run the model for inference. We choose Whisper-small 
as a good trade-off between quality and size of the model.  
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Table 3.1. Whisper Size Variants 
Model Layers Width Heads Parameters 
Tiny 4 384 6 39M 
Base 6 512 8 74M 
Small 12 768 12 244M 
Medium 24 1024 16 769M 
Large 32 1280 20 1550M 

 
For training and evaluation, we use the Common Voice dataset [Ardila et al., 2019], which is 
a multilingual corpus for Speech Recognition and Language Identification. The dataset is 
collected through crowdsourcing, where contributors can record their own voice reading a 
sentence in the Common Voice website or app, hence, the dataset contains speech from 
different speakers and with different levels of noise, and it can be used to evaluate or train 
robust speech recognition models. We use the Greek Language partition of the dataset, which 
contains 1.91k rows for training, 1.7k for validation, and 1.7k for test. We used both the training 
and validation subsets for training to get better results and used the test set for evaluation. 
For the other languages we only used the test set for reporting the results. We report in Table 
3.2 the hyperparameters of the finetuning. 
 

Table 3.2. Hyperparameters of Whisper Finetuning 
Hyper-parameter Value 
Encoder Layers 12 
Decoder Layers 12 
Attention Heads 12 
Embed Dim 768 
FFN Embed Dim 1536 
Dropout 0. 
Optimizer Adam 
Learning Rate 1e-5 
LR Scheduler  Linear 
Batch Size  8 

 
We report the Word Error Rate (WER) metric results in Table 3.3. The original model (Whisper-
small) achieves decent performance on all languages except Greek, where the WER is 
between 17.28 and 24.74 points higher than the other reported languages, a fact which 
motivated our work on finetuning Whisper for Greek. After finetuning, the performance 
improves by ~14 points, but it worsened on the other languages due to information forgetting. 
We found that finetuning is still better than using adapters by ~5 points, but the adapters 
guarantee a decent performance on the other languages because the model is frozen and it 
allows us to omit the use of the adapters during inference. 
 

Table 3.3. WER Results of Finetuning vs. Adapter finetuning of Whisper 
Model Greek Dutch German Italian Spanish English 
Whisper-small 41.93 17.71 17.00 24.65 16.19 19.36 
Whisper-small-finetuned 28.11 22.67 21.07 36.04 22.05 25.35 
Whisper-small-adapters 33.48 19.87 18.41 27.10 17.05 20.36 
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Deployment 
In the VOXReality pipeline the audio processing is handled through a set of endpoints in a 
REST API developed using FastAPI3 framework. The speech related endpoints are designed 
to generate transcriptions and translations from audio files in “wav” format and utilizes the 
Whisper-small-adapters model for ASR. There are three endpoints: speech recognition 
(transcription), speech translation and context-aware speech translation. The details of the 
API calls are presented in Appendix I. 
 
In speech recognition, the function generates a textual response to a given audio file in the 
“wav” format. The endpoint does not require a source language to be specified since it is 
automatically recognized by the model itself. Figure 3.2 presents the FastAPI-powered 
endpoint that can be requested using the handle “transcribe_audio_files” from the deployed 
server. 

 
Figure 3.2. The speech transcription endpoint 

 
In speech translation, the function generates a textual response to a given audio file in the 
“wav” format. The endpoint does not require a source language to be specified since it is 
automatically recognized by the ASR model itself. This endpoint utilizes the speech 
recognition model to transcribe the audio file and automatically utilizes the latest text 
translation model to translate the transcribed text to the given target language. Figure 3.3 
presents the FastAPI powered endpoint that can be requested using the handle 
“translate_audio_files” from the deployed server. 

 
Figure 3.3. The speech translation endpoint 

 
 

3 https://fastapi.tiangolo.com/ 
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In context-aware speech translation, the function generates a textual response to a given 
audio file in the “wav” format. The endpoint does not require a source language to be specified 
since it is automatically recognized by the ASR model itself. This endpoint utilizes the speech 
recognition model to transcribe the audio file and automatically utilizes the latest context-
aware text translation model to translate the transcribed text to the given target language using 
the given contextual text. Figure 3.4 presents the FastAPI-powered endpoint that can be 
requested using the handle “contextual_translate_audio_files” from the deployed server. 

 
Figure 3.4. The context-aware speech translation endpoint 

Next steps 
The Massively Multilingual Speech (MMS) Project is a recent effort from Meta to scale Speech 
models to 1000+ languages [Pratap et al., 2023]. The effort has resulted in pretrained speech 
representation models, ASR, Language Identification and Speech Synthesis models. The 
pretrained model is a Wav2Vec 2.0 based model [Baevski et al., 2020], which they finetune 
on downstream tasks. The ASR finetuning was done on a multilingual dataset of 1107 
languages. This has led to MMS achieving better results than Whisper on languages that both 
models are trained on, as it is shown in Table 3.4. We will invest in the MMS models and apply 
our approach to the pre-trained MMS models to produce better ASR performance for the 
consortium languages. Furthermore, we will work on real-time ASR models to facilitate 
simultaneous speech translation and simultaneous speech transcription. 
  

Table 3.4. MMS and Whisper Comparison Using Average WER on 54 Languages 
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3.2. Neural Machine Translation (NMT)  
In VOXReality, we introduce three major categories of machine translation models: a) Context-
aware Machine Translation, which includes surrounding sentences and/or terminology as 
context, b) Robust Machine Translation, which utilizes mechanisms to handle translation of 
noisy inputs, and c) Simultaneous Machine Translation, which translates source text in real-
time as the input is being generated. 

3.2.1. Context-aware Machine Translation 
In VOXReality, we utilize multi-encoder architectures, where all the encoder parameters are 
shared. This allows caching the hidden representation of the current sentence and reusing it 
as the hidden representation of the context when translating subsequent sentences, and we 
refer to this architecture as caching. Furthermore, several techniques have been proposed to 
shorten the sequence of tokens where the tokens are combined in shortening modules that 
are added between a specified number of encoder layers. This can lead to the reduction of 
the computational and memory requirements in the subsequent layers; therefore, a 
compressed representation of the previously seen sentences should be enough to use as a 
context.  
 
Consequently, we focused on the application of Sequence Shortening to Context-aware 
Machine Translation and we introduce two new shortening techniques (Latent Grouping and 
Latent Selecting), where the network can learn how to group or select tokens to form a 
shortened sequence. Shortening can be done by average/max pooling of the hidden 
representation of the tokens [Subramanian et al., 2020] or linear pooling of the concatenated 
representation of the tokens of the original sequence [Nawrot et al., 2021]. In the pooling-
based shortening, the sequence is divided into non-overlapping groups of K neighbouring 
tokens. 
 
In Latent Grouping, each token is categorized into a group by the feed-forward network (FFN) 
with the number of outputs equals to the number of groups (K). We obtain the categorization 
for the ith token to Kth group by applying the SoftMax function to the outputs in the dimension 
of the groups. Subsequently, the groups are constructed as the sum of the hidden 
representations. The network learns how to softassign each token to the groups. A group 
representation is computed using the weighted average of tokens, which makes 
backpropagations into the categorizing network possible. Finally, the attention module is 
applied on the group representations. Latent Selecting enables the groups to select tokens to 
aggregate rather than to assign each token to a group and allows the model to ignore tokens 
entirely rather than to assign them to at least one group. Although Latent Selecting can be 
achieved by maintaining a categorizing feed-forward network for each group, we utilize the 
same network as described for Latent Grouping but apply SoftMax in the sequence dimension 
instead of the token dimension. Figure 3.5 illustrates the model utilized for both latent grouping 
and latent selecting where the number of groups (K) is set to three. 
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Figure 3.5. The architecture of latent grouping and latent selecting 

 
The architecture we use, illustrated in Figure 3.6, is based on caching the hidden 
representations produced by the encoder, where the representations of the tokens of the 
current sentence are stored and can be reused as context when the subsequent sentences 
are translated. Although this architecture uses only a single encoder, it is different from the 
single-encoder models because the current sentence and the context sentences are 
processed separately. While in the standard caching architecture the hidden representation 
of all the tokens is stored, we introduce a sequence shortening module directly after the 
encoder, which returns the compressed hidden representation usually containing fewer tokens 
than the original sequence. The context is integrated in the decoder in the multi-encoder 
manner by using a separate cross-attention module for context tokens. To allow the decoder 
to distinguish between context sentences we employ learned segment embeddings [Devlin et 
al., 2018] and learned positional encoding for the shortened tokens inside context sentences. 

 
Figure 3.6. The architecture of VOXReality context-aware MT model 

 
During training, caching is not used, meaning that the model receives tokenized context 
sentences and processes them using the same encoder, where the weights of the encoder 
receive the backpropagation gradient from multiple sources - the current sentence and each 
of the context sentences. In order to eliminate difficulties in training that would arise from this, 
we block the gradient after the encoder and before shortening where applicable. This is done 
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by allowing the gradient information to flow for a specified number of context sentences, after 
which the gradient is blocked. 
 
Moreover, to allow a machine translation model to use terminology, we adapted the work of 
[Jon et al., 2021]. The main differences of our work are threefold:  

1) we apply this technique to the multi-lingual setting, 
2) we train the model capable of context-aware translation by utilizing the previous 

sentence of the source language, 
3) we finetune the pre-trained model (NLLB-600M [Costa-jussà et al., 2022]) instead of 

training from a random initialization.  
 
The model requires the list of terminology constraints with each item in the form of phrases in 
all consortium languages (English, German, Italian, Dutch, Spanish and Greek), although the 
phrase is not required to be specified in all languages. Each pair formed from the two phrases 
in different languages is treated as a constraint in both directions. We pre-process the 
terminology list by lemmatizing the phrases using spaCy [Honnibal et al., 2020]. 
 
During inference, the source sentence is lemmatized, and the search is conducted for any of 
the phrases in the terminology list from the same language. If a phrase is found, the 
corresponding phrase in the target language is appended to the source sentence delimited 
with the separator token “</s>”. In case when no phrase is found, the token is still added at 
the end of the source sentence (apart from the usual end-of-sequence token). Additionally, 
we allow the model to accept the previous sentence from the source language as context. To 
this end, we prepend the context to the input of the network delimited with the separator token. 
NLLB-600M model uses the same tokens as a separator and end-of-sequence token and we 
do not change that in our finetuned model. The architecture is illustrated in Figure 3.7. 

 
Figure 3.7. The terminology-constrained architecture 

 

Results 
It has been argued that the sentence-level metrics do not capture well the ability of the model 
to use the context. For this reason, to measure how well the model utilizes the contextual 
information, it is common to use a contrastive dataset such as Contrastive evaluation of 
Pronoun translation (ContraPro) [Müller et al., 2018] and Large Contrastive Pronoun Test 
(LCPT) [Lopes et al., 2020]. They are very similar to each other and both target pronoun 
disambiguation task. They differ in the language pair they use – ContraPro is English-German 
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and LCPT is English-French dataset. The example from the datasets is in the form of context 
sentences + source sentence in the input and several (usually three) target sentences that 
differ only in the pronoun. Only one of the target sentences is correct and the others are 
erroneous. Here is an example from EN-DE dataset: 
 

Context: “What’s your plan?” 
Source: “I forgot to confide it to you.” 

Correct Target: “Ich vergaß, es euch zu vertraun.” 
Incorrect Targets: “Ich vergaß, sie euch zu vertraun.”      

 “Ich vergaß, ihn euch zu vertraun.” 
 
The model outputs the probabilities of each target sentence (as a factorized probability 
calculated by multiplying the probability of each token). When the model scores the correct 
target as the most probable, model counts it as a correct prediction. Otherwise, it is incorrect. 
 
We trained the following models: 

- Sentence-level Transformer - where context sentences are ignored 
- Single-encoder Transformer - where context sentences are prepended to the current 

sentence and processed by the encoder 
- Multi-encoder Transformer - with the separate encoder (without weights-sharing) 

used to encode the context sentences, where the context and the current sentence are 
concatenated in the decoder (Our experiments revealed that this integration yields 
better results than with the separate context-attention module) 

- Caching Tokens - where the encoder representations of the context sentences are 
stored directly 

- Caching Sentences - where the representations of the context sentences are averaged 
and stored 

- Shortening - Mean Pooling - Sequence shortening with Mean Pooling applied to the 
outputs of the encoder 

- Shortening - Max Pooling - shortening with Max Pooling 
- Shortening - Linear Pooling - shortening with Linear Pooling 
- Shortening - Grouping - shortening with Latent Grouping (our proposed method) 
- Shortening - Selecting - shortening with Latent Selecting (our proposed method) 

 
To test the caching and sequence shortening models we trained each model with the same 
hyper-parameters that are presented in Table 3.5. We used the English to German and 
English to French directions of the IWSLT 2017 [Cettolo et al., 2017] document-level dataset 
that is based on the subtitles of TED Talks. We trained each model on both language pairs 
with varied context sizes (in terms of the number of previous sentences) separately. We 
measured BLEU [Papineni et al., 2002] using the sacreBleu library, and the accuracy on the 
contrastive datasets (ContraPro for EN-DE and LCPT for EN-FR).  
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Table 3.5. The hyper-parameters of all models trained on IWSLT 2017 dataset 
Hyper-parameter Value 
Encoder Layers 6 
Decoder Layers 6 
Attention Heads 8 
Embed Dim 512 
FFN Embed Dim 2048 
Dropout 0.3 
Optimizer Adam 
Learning Rate (LR) 5e-4 
LR Scheduler  Inverse Sqrt 
Batch Max Tokens  4096 

 
The results for EN-DE are presented in Table 3.6. The BLEU score of the context-aware 
models is generally similar to or slightly higher than the sentence-level Transformer. BLEU 
does not correlate well with the contrastive accuracy, which is strictly higher for all context-
aware models. This confirms that sentence-level metrics do not reflect the context usage of 
the models. The highest contrastive dataset accuracy was achieved by the Grouping 
Shortening model for the context size of one, the Max Pooling Shortening model for the context 
size of two, and the Selecting Shortening model for the context size of three. The highest 
accuracy averaged over the tested context sizes was reached by the model employing Latent 
Grouping, followed by the Latent Selecting model. Caching Tokens architecture exhibits 
comparable BLEU scores to the Single- and Multi-encoder architectures while achieving 
higher accuracy on the contrastive dataset. 
 

Table 3.6. Results of the models trained on the IWSLT 2017 with EN-DE dataset 
Model BLEU Accuracy  
Sentence-level 28.11 43.67%  

Model 
Context Size: 1 Context Size: 2 Context Size: 3 
BLEU Accuracy BLEU Accuracy BLEU Accuracy 

Single-encoder 28.31  47.42% 27.95 48.18% 27.88 48.88% 
Multi-encoder 28.67  44.93% 28.50 46.65% 28.26 45.00% 
Caching Tokens 28.35  54.06% 28.50 54.13% 29.08 51.23% 
Caching Sentence 28.38  45.72% 26.73 45.26% 26.70 44.91% 
Shortening – Max Pooling 27.62  51.67% 27.88 55.08% 28.26 50.89% 
Shortening – Avg Pooling 28.09  53.37% 27.85 54.81% 28.38 50.54% 
Shortening – Linear Pooling 27.62  52.71% 28.03 52.13% 28.18 51.27% 
Shortening – Grouping 28.21  56.98% 28.70 54.51% 28.49 51.16% 
Shortening – Selecting 28.15  54.48% 28.55 54.21% 28.01 51.95% 

 
The results of the models on the EN-FR datasets can be seen in Table 3.7. The BLEU scores 
of all models are comparable (apart from the Caching Sentence architecture). Latent Grouping 
achieved the highest accuracy on the contrastive dataset for the context size of one, and 
Latent Selecting and Single-encoder architectures for the context sizes of one and three, 
respectively. In general, Caching Tokens and Shortening models achieved higher accuracies 
than the Single- and Multi-encoder architectures (with the exception of the Single-encoder on 
English to French translation with a context size of three). 
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Table 3.7. Results of the models trained on the IWSLT 2017 with EN-FR dataset 
Model BLEU Accuracy  
Sentence-level 37.64 75.92%  

Model 
Context Size: 1 Context Size: 2 Context Size: 3 
BLEU Accuracy BLEU Accuracy BLEU Accuracy 

Single-encoder 37.25  77.27% 37.18 78.98% 37.12 80.87% 
Multi-encoder 37.44  75.72% 37.12 77.23% 37.34 75.76% 
Caching Tokens 36.88  79.67% 37.29 80.14% 37.73 79.90% 
Caching Sentence 36.50  77.33% 34.21 76.25% 34.78 75.71% 
Shortening – Max Pooling 37.48  79.51% 36.72 80.59% 37.85 79.71% 
Shortening – Avg Pooling 37.13  77.75% 37.12 80.16% 38.18 80.41% 
Shortening – Linear Pooling 37.02  80.47% 37.12 79.37% 37.42 79.64% 
Shortening – Grouping 37.05  79.91% 37.98 81.13% 37.18 79.54% 
Shortening – Selecting 37.38  80.89% 37.83 80.32% 37.81 80.09% 

 
We train the terminology-constrained model on the OpenSubtitles2018 dataset [Lison et al., 
2018] for all 30 language pairs formed from the consortium languages in both directions. For 
each language, we use 50000 examples with the previous sentence as context and 50000 
without context. Following [Jon et al., 2021] we augment the dataset with artificial terminology 
by selecting a random span in the lemmatized target sentence and using it as a target 
terminology constraint. This augmentation is done to the examples in both sentence-level and 
context-aware datasets with the probability of 0.3. The word-length of the terminology item is 
drawn from the geometric distribution with p=0.85 with the maximum of three. The final training 
dataset is formed by interleaving the examples from the sentence-level and context-aware 
datasets as well as the language pair-specific datasets. Table 3.7 presents the hyper-
parameters. 
 

Table 3.8. The hyper-parameters of the terminology-constrained model 
Hyper-parameter Value 
Encoder Layers 12 
Decoder Layers 12 
Attention Heads 16 
Embed Dim 1024 
FFN Embed Dim 4096 
Dropout 0.1 
Optimizer Adam 
Learning Rate 5e-5 
LR Scheduler  Linear 
Batch Size  12 

 
We evaluated our terminology-constrained model and the baseline (NLLB-600M) on the test 
subset of the OpenSubtitles2018 dataset for all consortium language pairs. We used our 
model in four modes of operation: 

- No context, no terminology (Figure 3.8 - Ours) 
- Context, no terminology (Figure 3.8 – Ours with context) 
- No context, terminology (Figure 3.8 – Ours with terminology) 
- Context, terminology (Figure 3.8 – Ours with context and terminology) 
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To obtain the terminology for our model, we used the same procedure as used for training 
with the same probabilities. The results in terms of BLEU are illustrated in Figure 3.8. Our 
model outperforms the baseline in all models of operation. Using the terminology leads to the 
largest improvements in terms of BLEU. 

 
Figure 3.8. BLEU scores on the OpenSubtitles2018 test set in all consortium languages. 

 
Additionally, we tested the usage of the context of our model on the ContraPro (EN-DE) 
dataset. The results including the base model are presented in Table 3.9. The performance in 
terms of accuracy on ContraPro dataset of our model is increased by 4% compared to the 
baseline. 

Table 3.9. Accuracy of the models on the ContraPro contrastive dataset 
Model Accuracy 
NLLB-600M 46.44% 
Ours with context and terminology 50.59% 

 

3.2.2. Robust Machine Translation 

Part of our goals at VOXReality is to build robust and reliable models that are ready for 
production. We research techniques for building a Robust Machine Translation model that is 
able to produce a correct translation even when the input is noisy. We focus on non-native 
speaker noise and adapt the model to handle non-native input issues. 

 
We worked on improving a model that underperforms on non-native speakers’ noise. We 
experimented with finetuning and realised that it leads to information forgetting which 
negatively impacts the performance on clean data. This has led us to the solution of using 
adapter networks [Rebuffi et al., 2017] [Houlsby et al., 2019]. Adapter networks are small 
modules that are inserted into the model and can be trained to adapt the model’s 
representations to different tasks or domains. The model can be frozen or trained jointly with 
the adapters. In our case, we freeze the model to minimize information forgetting which can 
impact the performance, especially since we are finetuning on noisy data. We use a simple 
adapter architecture [Bapna et al., 2019] composed of layer normalization, followed by a down 
projection and up projection with a Rectified Linear Unit (ReLU) in between. The down 
projection is a linear layer that projects the input into a lower dimension, and the up projection 
brings the representations back to their original dimension. We insert the adapter network after 
the feedforward network of the transformer layer. The adapter output is added to the original 
feedforward network output, which forms a residual connection.  
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In an encoder-decoder architecture, the encoder takes care of building a representation of the 
input text that then the decoder can rely on to generate the output, which means that if we can 
nudge the encoder to output a clean representation even when the input is noisy, the decoder 
will be able to correctly generate the output. We insert the adapters into the encoder and train 
them to update the encoder representations while the encoder and decoder parameters are 
frozen. We train the adapters with two objectives: a translation objective, and a similarity 
objective where the decoder is motivated to produce representations that have high similarity 
to clean representations from the same frozen encoder. Figure 3.6 illustrates this architecture. 
The following equation shows the training objective of our model: 
 

𝐿 = 𝜆. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 -𝑒𝑛𝑐𝑜𝑑𝑒𝑟3𝑥!"#$%), 𝑒𝑛𝑐𝑜𝑑𝑒𝑟′(𝑥&'()!9: + (1 − 𝜆). 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑦B) 
 
where 𝜆 is a hyperparameter for controlling the impact of the similarity on the model. encoder’ 
refers to the encoder with the adapters. 𝑥!"#$%  and 𝑥&'()!  are the noisy and clean input 
respectively. 𝑦 and 𝑦B are the target and predicted translation respectively. 

 
Figure 3.9. Training a Robust Model Using Adapters 

 

Results 
In order to properly evaluate our models, we make sure that we evaluate using both clean and 
noisy input to ensure we don’t sacrifice performance on clean data for performance on the 
noisy one. We use The John Hopkins University (JHU) FLuency-Extended 
Grammatical/Ungrammatical (GUG) corpus (JFLEG) [Napoles et al., 2017], a dataset of non-
native speaker text with corrections. More specifically, we use the JFLEG-es [Anastasopoulos 
et al., 2019] which is the same dataset paired with Spanish translations. For finetuning the 
model, we rely on Grammatical Error Correction datasets to acquire clean and noisy input 
pairs. Then we use the original model to translate the clean inputs to the target language and 
use the results as reference translations for finetuning. We evaluate the model using three 
datasets, namely: Lang-8 [Tajiri et al., 2012], First Certificate in English corpus (FCE) 
[Yannakoudakis et al., 2011], and Building Educational Applications (BEA) [Bryant et al., 
2019]. The training dataset size of these datasets are 30543, 1.9 million, and 34309 for FCE, 
LANG-8, and BEA respectively. We finetune OPUS-mt-en-ROMANCE [Tiedemann & 
Thottingal, 2020] on each of the three datasets. We report the finetuning hyperparameters in 
Table 3.10. 
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Table 3.10. The hyper-parameters of the robust MT model 

Hyper-parameter Value 
Encoder Layers 12 
Decoder Layers 12 
Attention Heads 16 
Embed Dim 1024 
FFN Embed Dim 4096 
Dropout 0.1 
Optimizer Adam 
Learning Rate 5e-5 
LR Scheduler  Linear 
Batch Size  16 

 
We report BLEU on both noisy and clean data in Table 3.11. No finetuning refers to using the 
original model directly for translation. We can see that there is a gap of more than 2 BLEU 
points between the performance on clean and noisy data. After finetuning the whole 
parameters of the model, the performance on both clean and noisy data drops, which can be 
explained by information forgetting. Finetuning all parameters on noisy data leads the model 
to forget what it has learned during the initial training.  Table 3.11 also reports the results of 
using adapters with and without the similarity loss and we can see that both techniques 
improve the results over the original model in both clean and noisy data, while adapters with 
similarity loss are better on noisy translation when finetuning on Lang-8 and BEA.  
 

Table 3.11. A Comparison of Finetuning and Adapter based finetuning on JFLEG-es 

Dataset 
No finetuning Finetuning Adapters-Similarity Loss Adapters 

Clean Noisy Clean Noisy Clean Noisy Clean Noisy 

LANG-8 31.92 29.40 26.94 23.67 32.46 31.10 32.32 30.73 

FCE 31.92 29.40 29.82 28.54 32.39 31.28 32.55 31.57 

BEA 31.92 29.40 30.75 30.06 32.33 31.46 32.41 30.96 

 

3.2.3. Simultaneous Machine Translation 

In VOXReality we introduce two approaches for simultaneous machine translation: a) Multi-
path training with adapters: a single model that can support multiple fixed wait-k values by 
using adapters and b) Adaptive strategy: utilizing the probabilities that the model assigns to 
the most likely token and a predefined probability threshold, we decide on either a “read” (the 
model continues to read new tokens) or a “write” (the model can continue with translation) 
action. 
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In multi-path training with adapters, we insert adapters into the decoder layer, following the 
implementation of [Bapna et al, 2019] and insert the residual adapter modules after the feed-
forward layer. Each adapter is activated for a set of train or test wait-k values. During training, 
the wait-k values are sampled uniformly following multi-path training [Elbayad et al., 2020]. In 
the adaptive strategy, we follow the approach of [Zheng et al., 2020] to build an adaptive 
strategy by using adapters instead of different models for each wait-k value. At each decoding 
step, we activate one single adapter based on the lagging behind the current generation step. 
Then, we utilize the probability of the most likely token to decide whether to write or read a 
new token. If the probability is less than the set threshold, we read a new token, otherwise we 
write. Furthermore, if wait value (k) is lower than the minimum wait value, we force the model 
to read and if it is higher than the maximum wait-k, we force the model to write, which means 
that the choice of minimum and maximum values of wait also impacts latency. The architecture 
of the model is presented in Figure X. 

 
Figure 3.10. The architecture of wait-k adapter model 

Results 
We utilized our methods in three transformer versions: transformer-small, transformer-base 
and transformer-big. The hyperparameters for these models are presented in Table 3.12. The 
evaluation was performed with two public datasets: EN-VI (English - Vietnamese) dataset from 
IWSLT 2015 Evaluation Campaign [Cettolo et al., 2015] for evaluating transformer-small 
models, and DE-EN (German - English) dataset for evaluating transformer-base and 
transformer-big models. The EN-VI dataset consists of 133K pairs and DE-EN dataset 
consists of 4.5M pairs. 
 

Table 3.12: Hyperparameters of the Simultaneous Machine Translation Models 
Hyper-parameter Transformer-small Transformer-base Transformer-big 
Encoder Layers 6 6 6 
Decoder Layers 6 6 6 
Attention Heads 4 8 16 
Embed Dim 512 512 1024 
FFN Embed Dim 1024 2048 4096 
Dropout 0.3 0.3 0.3 
Optimizer Adam Adam Adam 
Learning Rate 5e-4 5e-4 5e-4 
LR Scheduler  Inverse Sqrt Inverse Sqrt Inverse Sqrt 
Batch Max Tokens  16000 8192 8192 
Number of Adapters 8 8 8 
Adapter Bottleneck 64 64 64 
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We trained the following models: 
- Offline Transformer - where the model takes the full sentence  
- Wait-k - where the model waits for k source tokens before starting to alternate between 

writing a target token and reading a source token [Ma et al., 2018] 
- Multipath Wait-k - where the model supports multiple wait-k policies by randomly 

sampling k during training and the k value is fixed during inference [Elbayad et al., 2020] 
- Adaptive Wait-k - where there are multiple models for different wait-k values and during 

inference the model is selected based on the lagging behind generation step and the 
decision to write or read is based on the output probabilities. [Zheng et al., 2020] 

- MoE Wait-k - where the model uses multipath wait-k approach but it utilizes Mixture-of-
Experts (MoE) method instead of random [Zhang & Feng, 2021] 

- MMA - where the model follows the Monotonic Multi-head Attention (MMA) that jointly 
learns a Bernoulli variable that is used to decide read/write action [Ma et al., 2019] 

- Adapters Wait-k - multi-path training with adapters (our proposed method) 
- Adaptive Adapters - the adaptive strategy (our proposed method) 

 
Figure 3.11 presents the results obtained from the comparison with average lagging (k-
latency) and BLEU score of our proposed methods with the other models we trained, where 
Figure 3.11a is EN-VI transformer-small, Figure 3.11b is DE-EN transformer-base, and 
Figure3.11c is DE-EN transformer-big model results. According to these results, our method 
improves or competes with other strategies on different latencies while using a single model. 
MMA, Wait-k, and Adaptive-waitk require the training of multiple models in order to support 
multiple latencies, while our method is more flexible in this regard. The number and capacity 
of the adapters can be adjusted depending on the complexity of the language direction and 
the latencies we are planning to support. Furthermore, using adapters alone (Adapters Wait-
k) is competitive with other methods especially on EN-VI, but using an adaptive strategy further 
improves the results, especially in low latencies. In comparison to Adaptive Wait-k, where 
wait-k policy models are trained and composed during inference, we find that our method is 
better in all latencies while being more efficient. Compared to Moe-Waitk, which also aims at 
minimizing interference introduced by multi-path training, we find that our method is better in 
all latencies on EN-VI for transformer-small and on DE-EN with transformer-big, while 
achieving competitive results when using transformer-base. 
 

 
Figure 3.11. BLEU-Average lagging results for  

a) transformer-small, b) transformer-base, and c) transformer-big 
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3.2.4. Deployment 
In the VOXReality pipeline, the translation process is handled through a set of endpoints in a 
REST API developed using FastAPI framework. The machine translation endpoints are 
designed to generate translations from textual inputs. There are four endpoints: text 
translation, context-aware translation, context-aware terminological translation, and 
terminology configuration. The details of the API calls are presented in Appendix I. 
 
In text translation, the function generates a textual response in the target language to a given 
text. The endpoint does not require a source language to be specified since it is automatically 
recognized by the model itself. Figure 3.12 presents the FastAPI powered endpoint that can 
be requested using the handle “translate_text” from the deployed server. 

 
Figure 3.12. The text translation endpoint 

 
In context-aware translation, the function generates a textual response in the target language 
to a given text and a given context, which is provided as textual information. The endpoint 
does not require a source language to be specified since it is automatically recognized by the 
model itself. Figure 3.13 presents the FastAPI powered endpoint that can be requested using 
the handle “contextual_translate_text” from the deployed server. 
 

 
Figure 3.13. The context-aware translation endpoint 

 
In context-aware terminological translation, the function generates a textual response in the 
target language to a given text and a given context, which is provided as textual information, 
as in the context-aware translation, but the model in this endpoint also utilizes a file that is 
uploaded to the server, which contains terminological terms and their translations in other 
languages. The endpoint does not require a source language to be specified since it is 
automatically recognized by the model itself. Figure 3.14 presents the FastAPI powered 
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endpoint that can be requested using the handle “contextual_terminology_translate_text” from 
the deployed server. 

 
Figure 3.14 The context-aware terminological translation endpoint 

 
In terminology configuration, the function uploads a file that contains terminological terms and 
their translations in other languages to the server. Figure 3.15 presents the FastAPI powered 
endpoint that can be requested using the handle “upload_terminology” from the deployed 
server. 

 
Figure 3.15 The terminology configuration endpoint 

 

3.2.5. Next steps 
For the machine translation task, we will implement the following next steps: 
1) The integration of the simultaneous machine translation with the API 
2) The integration of the robust machine translation with the API 
3) The implementation of context-aware terminological robust machine translation 
4) The implementation of context-aware terminological robust machine simultaneous machine 
translation 
5) The fine-tuning of the current models with a dataset we are generating using the play 
Hippolytus by Euripides for better translation of this text from Greek to other consortium 
languages. 
6) Further research and experiments with the proposed models and their variations for 
achieving better results for the usecases  
7) Scientific publication of the proposed methodologies 
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3.3. Vision-Language Models (VL) 
In compliance with the task description in the project’s Grant Agreement (GA), we are 
developing a series of spatially aware Vision-Language (VL) models that act as “visual 
context” providers to the rest of the VOXReality’s pipeline. In this way, various other 
components like the Neural Machine Translation (NMT), the Automatic Speech Recognition 
(ASR) and the Conversation Agents (CA) of the use-cases can benefit from additional, current 
knowledge of the surrounding environment, adapting their behaviour to that.  
 
Core-concept of any VL model is the apparent alignment of Vision and Text modalities, which 
the network implicitly has to learn in order to perform all the complex VL tasks. All these tasks 
require foremost the connection between the various entities of the visual media (I.e. image, 
video) and the words in the accompanying sentence. This is called “vision and language 
representations alignment”. Note that these connections can be so subtle that may refer to 
sub-word (minimum meaningful parts of words/stems) and sub-object levels (patterns in 
objects). 
 
In literature, we commonly come across with two prominent VL tasks: the image captioning 
(IC) and the visual question answering (VQA). In the first task, the model is asked to provide 
captions of an image, while in the second the model is asked to answer a question about the 
image. What differentiates our tasks to the typical VL ones is that our models need to 
understand, describe and answer questions related with the spatial aspects of the word, 
meaning that generic descriptions about the nature of the scene will not be considered (E.g. 
the caption “a cat is playing with the ball” is not acceptable. We prefer something similar to “a 
cat is to the left of the ball”). This requirement puts extra strain on the devised model 
architecture, since the training and evaluation protocol and the data gathering and selection 
should all be able to facilitate such an out-of-envelope approach to VL. 
 
So, in the duration of this project we will first explore and provide models for spatial Vision-
Language acting on still RGB images, then we will steer our efforts towards 3D-Language 
modelling, acting directly on raw depth images and lastly, towards the end of the project, we 
will experiment with Video-Language models trying to harness the additional temporal 
information. 
 

3.3.1. Early models delivery 
In order to facilitate the timely and unobstructed development across the VOXReality pipeline, 
we deemed necessary to define early in the project a standardized model delivery mechanism 
and an inference API that, more or less, will remain constant throughout the project’s pilots 
and Open Calls (OC). 
 
Instead of simply defining the templates, we preferred to adapt, package and deliver to the 
rest of the platform actual state-of-the-art (SOTA) VL models (not spatially aware though), to 
enable use-case developers to infer and use real working models, in a way similar to what 
they are about to experience with ours. So, we released two inferable SOTA VL models, one 
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for each task (IC4 and VQA [Tan & Bansal, 2019]) and an extra composite service that 
provides a full spatial description of an image exploiting Object Detection (YOLO-NAS5), 
transformers-based monocular Depth Estimation [Ranftl et al., 2021] and our in-house 
heuristics for sentence creation.  
 
We decided that all our services provided to the project will be in the form of Docker images, 
GPU-accelerated when needed, exposing RESTful API6 endpoints for inference. Details on 
the exact message formatting can be found in Appendix II. Additionally, the services will also 
be providing a web interface built around FastAPI7 enabling GUI-based interactive inference, 
ideal for demonstration and debugging purposes. Figure 3.16 presents the endpoints for the 
early image captioning model, early visual question answering model, and composite spatial 
scene description (scenegraph) service used for the creation of our COCO extension dataset. 

 

 
Figure 3.16. Early endpoints for a) image captioning, b) visual question answering  

and c) spatial scene description (scenegraph)  
 
 

 
4 https://qi-xin.github.io/image%20caption%20generation.pdf 
5 https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md 
6 https://docs.github.com/en/rest?apiVersion=2022-11-28 
7 https://fastapi.tiangolo.com/ 
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3.3.2. Metrics and limitations 
A general problem in evaluating NLP, and consequently VL, model predictions is that in human 
language it is common to find sentences that have almost the same meaning by utilizing 
synonyms or have the exact same meaning despite having different word ordering. On the 
other hand, it is also common having sentences that although contain the exact same words, 
word order changes can alter their meaning significantly. Moreover, sentences that have all 
words equal and in the same order, with the absence of even one word may totally lose their 
meaning or natural sound (E.g. the removal of one “not”). Others, with the addition of one 
redundant word can still have the exact same meaning. All these phenomena, in most cases, 
render the use of naive similarity or entropy metrics at least questionable for the task of fairly 
evaluating the output of an NLP model and even though they frequently participate in training 
loss functions, rarely should be used for actual evaluation. 
 
There are multiple evaluation metrics proposed in literature, each one trying to alleviate 
different pitfalls of the aforementioned linguistic behaviours. So, it is safe to assume that there 
is no metric adequate to cover meticulously every aspect of the performance envelope and 
using multiple ones may usually be the preferred approach. Importantly, since our intended 
use is for the evaluation of spatiality-containing language, even the most widely used NLP-
targeted metrics may not be able to capture our intentions. For this specific reason, we devised 
our own metric which in its simplicity we believe captures better the spatial accuracy of a 
model and is most relevant to our case. In the following paragraphs, we explain more about 
our devised evaluation metric. 
 
When planning for our developments, we soon realized that all these of the well-established 
metrics might not be suitable for judging a produced sentence for its spatial accuracy. The 
reason is that the correctness of a sentence we care about does not lie in the top-level 
semantics of the words contained (their individual meaning) but in the existence of the objects 
described (correct object identification) and the correct description of the relationships 
between them (their relative positions). BLEU, ROUGE and METEOR may capture these 
relationships to some extent, but only incidentally. There has been works like [Kritharoula et 
al., 2023] and [Liu et al., 2022] that face similar challenges and develop their own evaluation 
procedures, trying to attack the problem each one from another angle. Our devised approach 
is described below:  
 
Concurring with the general consensus, we believe that a single number cannot capture all 
aspects of performance in this challenging task. So, we devised a parametrizable metric that 
when calculated for the whole dataset intends to answer 2 questions; A: “What is the 
probability of a caption to be correct” (to describe a valid relationship) and B: “What is the 
probability of an image to be captioned correctly?” (to have a caption that describes a valid 
relationship between object in it). We need to remind here that our models generate a small 
paragraph describing an image and not a single sentence. Consequently, many captions may 
refer to the same image. Additionally, a different number of captions may be generated for 
each image. Let us call our metric “OURSh-{A,B}”. For each variation, we define h to be the 
number of sentences we wish to consider for each image (the first h[1,MAX] captions 
generated). We decided to consider only 1,2,3 and the MAXimum number of captions the 
models can generate for each image. A and B indicate the question answered we mentioned 
earlier. Note that, we omit the {1,2,3}-B cases because, obviously, they are equal to their 
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respective A-cases, as difference between A and B scores arises only when a different number 
of captions is considered between images (the case of MAX-B). In short notation, each of the 
variations can be defined as: 
 

• OURS{1,2,3,MAX}-A = !*+,(
!*+,(-!.)'$(

 
 
where nTrue is the total number of captions that can be exact matched in their 
respective images’ ground truth paragraphs and nTrue+nFalse is the total number of 
generated captions (in the case of h=1, nTrue+nFalse=nImages). 
 

• OURSMAX-B = 
∑ !"#$%&

'()&
!*+,-%.
𝒾01

!01)2($
 

 
where nTruei is the number of exact matched captions of image i in its ground truth 
paragraph and MAXi is the maximum number of captions the model can generate for 
image i and can vary between images. 
 

A question that naturally arises is “Why the exact matching between a generated caption and 
the respective image’s ground truth is a robust and fair way to extract truthfulness?”. 
Anecdotally, we realised that in our use case the models are trained on a very basic 
vocabulary that includes solely the object labels (“the cat”, “the car”, “the human”, etc.) and a 
limited number of phrases that indicate relative positioning (“is in front of”, “is behind”, “is 
above”, “is below”, “is to the left of”, “is to the right of”). In that context, the models negligibly 
fail to produce a grammatically valid sentence and any errors are almost always due to object 
misidentifications and/or wrong identification of their relative positioning, which is exactly what 
we look for. So, in fair terms, we can assume that exact searching of the generated captions 
inside the ground truth paragraph is reliable.  
 
Our metric, of course, comes with its own limitations and considerations. The most notable 
one is being dependent on the correct identification of the described objects. Consider the 
example in Figure 3.17 with a flower in a vase and a kitten next to it.  
 

 
Figure 3.17. The example image with a flower in a vase and a kitten next to it 

 
Prediction: “The cat is to the right of the vase?” 

Ground Truth: “The kitten is to the right of the vase.” 
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The problem is that even if the relative position between the identified objects is correct and a 
human would totally make sense of the slight misidentification of the cat to be the kitten (and 
the kitten is also a cat), our metric would evaluate it being wrong. A more challenging example 
would be to misidentify the kitten as a leopard. In the context of only two objects being present 
and the feline nature of the leopard, a human would guess that it probably meant the kitten 
rather than the vase, and potentially evaluate the relationship as correct. As a countermeasure 
to all these, we could try to add a pre-processing step similar to METEOR’s that use an 
external source to identify stems and synonyms, in an effort to minimize these effects; but still, 
it is obvious that there is no clear answer to these challenges.  

3.3.3. The Vision (RGB)-Language case  

Dataset 
As we described in previous chapters, we aim to develop models for 3 cases: Vision (RGB)-
Language, 3D (depth)-Language and Video-Language. To achieve spatial understanding in 
any case, having good amounts of data spatially annotated is of primal importance. We soon 
realized that there were not big repositories with such data openly available, at least in the 
form we imagined having them. So, we deemed necessary to extend a widely used VL dataset 
in the spatial domain to have the large amounts of data we needed to initiate the development 
of the models. COCO 2014-2015 dataset is considered one of the golden standards of the 
field, comprising about 164.000 RGB images paired with generic captions. In order to extend 
this massive dataset to the spatial domain, we devised a composite mechanism able to 
produce spatial captions, questions & answers and depth images for the whole dataset 
automatically. Note that, the depth images produced are needed internally by this mechanism 
to create the spatial captions and are not used directly anywhere by the models developed for 
the Vision-Language case. In the future, the 3D-Language models we are about to develop 
will probably process them, to profoundly understand 3D space. The core part of this 
mechanism, the “spatial scene description (scene-graph)” generator that produces for a given 
image a paragraph describing all the 1-1 relationships between the detected objects of the 
scene, is dockerized and released for use together with our early SOTA models. The algorithm 
we devised to automatically produce the spatial captions for all images is the following: 
 
We take for granted that all positioning will be relative to the viewer’s point of view and not 
according to the perceived orientation of the respective objects. So, when we say “to the left 
of the gorilla” we mean relative to our view, not the gorilla’s view. We chose to evaluate all 1-
1 relationships between the identified objects in a scene in 3-axes; lateral (left-right), 
longitudinal (in front of-behind) and height (above-below). We evaluate lateral and height 
relationships on the RGB images and longitudinal ones in their respective depth images. We 
produce the depth images using a SOTA transformers-based depth-estimation model [Ranftl 
et al., 2021] and since we are interested only in the objects’ depth-ordering and not their exact 
depth, we can safely assume that this model is powerful enough to produce almost perfect 
results. We randomly sampled and verified manually the truthness of the inferred depth-
ordering in about 200 out of the 164.000 created images. In any case, as we will describe in 
a moment, objects with close depth estimations are not even evaluated in this axis (remains 
inconclusive what is in front of what), so they cannot teach the model erroneously. 
 
For each RGB image, the procedure initiates by detecting all the objects in the scene. This is 
done using the latest iteration of the SOTA Object Detector YOLO-NAS and results in a list 
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containing the label, 2D-bounding box (ymin, ymax, xmin, xmax) and centre (cx, cy) coordinates of 
all detected entities. Then, for each item in this list we evaluate its relative position against all 
other items across the 3 aforementioned axes. To form the caption sentences we arrange and 
concatenate the objects labels with the definite article “the”, together with a fixed set of phrases 
indicative of the spatial relationship between the involved objects, using a heuristic set of rules. 
 
Using as example the lateral axis (x) and 2 objects A and B, we evaluate whether B’s left-most 
bounding box boundary (Bxmin) is to the right of the right-most boundary of A’s (Axmax). If it is, 
then we form the sentences “The <B> is to the right of the <A>” and equally “The <A> is to 
the left of the <B>”. If it is not, then we check whether their existing overlap is insignificant 
enough compared to the scale of the items, that it can still be considered that one item is to 
the right/left of another. Algorithmically, we evaluate if (Bcx>Acx) AND ((Bcx-Acx) / (Axmax-Bxmin) 
> 3). If yes, then we still form the aforementioned sentences. If not, we discard this relationship 
and do not create any sentence. To continue, we repeat the exact same process for the height 
axis (y) evaluating Bymin, Aymax, Bcy, Acy respectively, forming sentences using the words 
“above” and “below” this time. As we mentioned previously, the longitudinal (depth) axis is 
treated differently. Given that both the RGB and the depth images have the same resolution, 
and we know the placement of the various objects in the RGB image, we use the same 
coordinates to sample their depth from the depth image. For simplicity, we consider the 
bounding box’s central pixel’s depth value representative of the whole object’s depth. To be 
on the safe side, we have set a threshold of at least 40 depth units [0-255] that two objects 
must differ in order to consider one in front of the other. So, we check if depth (Acx,Acy) - 
depth(Bcx,Bcy) > 40 to create the sentences “The <A> is in front of the <B>” and equally “The 
<B> is behind the <A>”. 
 
Apart from the image captioning task, in order to also enable the visual question answering 
task we need to create pairs of space-related questions & answers. An automated way to do 
that is to decompose each one of the captions into 2 self-evident questions & answers about 
the “What” and the “Where” of the described relationship. To give an example, solely from the 
caption “The <B> is to the right of the <A>” we can safely produce: Question 1 “Where is the 
<B>?” Answer 1 “To the right of the <A>” and Question 2 “What is to the right of the <A>?” 
Answer 2 “The <B>”. In this manner, we can create a huge amount of Q&As. To summarize, 
for both tasks, all the possible sentences that the mechanism can automatically produce for a 
pair of objects A and B are the following 30, and together with all the possible object labels 
comprise the total of the training vocabulary: 
 

The <B> is to the right of the <A>.  
The <A> is to the left of the <B>.  
The <B> is above the <A>.  
The <A> is below the <B>.  
The <B> is behind the <A>.  
The <A> is in front of the <B>.  
Question: Where is the <B>? Answer: To the right of the <A>. 
Question: What is to the right of the <A>? Answer: The <B>. 
Question: Where is the <A>? Answer: To the left of the <B>. 
Question: What is to the left of the <B>? Answer: The <A>. 
Question: Where is the <B>? Answer: Above the <A>. 
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Question: What is above the <A>?  Answer: The <B>. 
Question: Where is the <A>? Answer: Below the <B>. 
Question: What is below the <B>? Answer: The <A>. 
Question: Where is the <B>? Answer: Behind the <A>. 
Question: What is behind the <A>?  Answer: The <B>. 
Question: Where is the <A>? Answer: In front of the <B>. 
Question: What is in front of the <B>? Answer: The <A>. 

 
Using the objects’ labels, their bounding boxes, centres and the corresponding depth image, 
the automated mechanism can populate the above 30 sentence templates to create the set of 
captions and questions & answers we require. For example, using the RGB image and the 
depth image presented in Figure 3.18, descriptions such as “The person is to the right of the 
fire hydrant” and “The fire hydrant is in front of the person” can be generated. 
 

 
Figure 3.18. Example RGB and Depth image that includes a person and a fire hydrant 

 
The maximum number of captions the mechanism can produce for an image is nObjects x 6 
x (nObjects-1) and consequently twice that many questions & answers. To have an idea of 
the final dataset’s extend, it contains 164.000 RGB images, equal number of depth images, 
each image contains on average 6 detectable objects leading to around 20.000.000 spatially 
aware captions and 40.000.000 sets of spatial questions & answers, all packed in about 70 
GB of storage. 

Model architecture 
Stepping on the theoretical foundations described in the project’s GA, we first looked for 
potential solutions into a couple-years-old prominent family of VL pre-training encoders. We 
studied and experimented with works like LXMERT [Tan and Bansal, 2019], VisualBERT [Li 
et al., 2019] and UNITER [Chane et al., 2020]. Although these works have shown, for both IC 
and VQA tasks, remarkable performance in various benchmarks, the language output they 
generate is limited and shallow. It was soon realized that in order to generate more natural 
and richer textual representations we needed to migrate to a Vision Encoder-Decoder 
scheme. This versatile family of solutions can generate sophisticated and natural-sounding 
language that is currently considered the state-of-the-art of VL modelling. 
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Building on the Hugging Face’s vision encoder-decoder model8, we experimented with various 
combinations of pre-trained transformer-based vision models as the encoder (i.e. ViT 
[Dosovitskiy et al., 2020], BEiT [Bao et al., 2021], DeiT [Touvron et al., 2020], and Swin [Liu 
et al., 2021]) and pre-trained transformer-based language models as the decoder (i.e. 
RoBERTa [Liu et al., 2019], GPT2 [Radford et al., 2019]). The effectiveness of initializing 
image-to-text-sequence models with pretrained checkpoints has been shown in various works 
like [Li et al., 2021]. Our SOTA experiments were conducted in order to enhance our 
understanding of the Hugging Face’s framework and decide which combination of vision 
encoder and language decoder we should train to cover our needs. We need to mention here 
that the SOTA pre-trained models we tested were mostly trained on the standard COCO 
dataset and thus showcase no notion of spatiality in their generated captions and question 
answers. So, we chose to train our selected encoder-decoder combination on our spatially 
aware extension of the COCO dataset, from scratch (random initial model weights). Of course, 
when our pre-training is done, we will finetune our model to our specific use cases in Transfer-
Learning manner [Zhuang et al., 2019]. Judging from the pre-trained versions’ performance 
and weighting in our hardware limitations, mainly in GPU memory, we opted to develop a 
combination of ViT for the vision encoder and GPT2 for the language decoder. 
 
Beginning from the encoder, ViT processes the input image by dividing it into fixed-size 
(16x16) non-overlapping patches (input image dimensions: 224x224). In ViT’s context, the 
patch is treated as the unit for further processing. Each patch is linearly embedded to obtain 
a patch-embedding. The idea is to capture local information within each one of these, while 
enabling interactions between them in the subsequent transformer layers. To achieve that, the 
model needs to introduce positional embeddings to capture the spatial relationships between 
the different patches of the image. Unlike sequence data where the order of tokens is inherent, 
images lack a natural ordering of pixels, and therefore, positional information needs to be 
injected explicitly. In ViT, the patch’s position is represented by a unique positional embedding 
vector created using a combination of trigonometric functions (sine and cosine), ensuring that 
the positional embeddings have a smooth and continuous pattern. These positional 
embeddings, added to the patch embeddings, form the input sequence for the transformer 
encoder. Then, the transformer-based encoder attends to the relationships between the 
different patches, capturing both local and global contextual information. The final output of 
the encoder is a set of contextualized embeddings for each patch, representing a deep and 
rich understanding of the image content. 
 
As regards the decoder, the GPT-2 is a language model designed for generating coherent 
and contextually relevant sequences of language tokens. In this case, it takes as input the 
output embeddings from the ViT encoder and fuses them with its own contextual 
understanding of language during the decoding process in an autoregressive manner, 
generating one token at a time conditioned on the previously generated tokens. It uses a 
transformer-based architecture, similar to the original GPT-2 language model, consisting of 
multiple layers of transformer decoder blocks. Each block contains a multi-head self-attention 
mechanism and a feedforward neural network. The self-attention mechanism allows the model 
to attend to different parts of the input sequence, capturing dependencies and context. Similar 
to the ViT encoder, the GPT-2 decoder utilizes positional embeddings to provide information 

 
8 https://huggingface.co/docs/transformers/v4.36.1/en/model_doc/vision-encoder-
decoder#transformers.VisionEncoderDecoderModel 
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about the sequential order of tokens in the generated output. While the ViT uses sinusoidal 
positional embeddings, the GPT-2 decoder uses learned positional embeddings. During the 
decoding process, the GPT-2 decoder attends to the encoded visual information provided by 
the ViT encoder. The attention mechanism allows the model to focus on relevant parts of the 
image content when generating each token in the output sequence. 
 
Note that the architectural analysis given above is indicative to the image captioning task. 
Slight adaptations in architecture and, of course, training it with different data (pairs of 
questions and answers) is needed to adapt our model to the visual question answering task. 
For VQA, the model takes both an image and a textual question as input. The image is 
processed by the ViT encoder to obtain visual embeddings and the textual question is typically 
encoded separately, either using a transformer-based architecture or other encoding 
mechanisms. The ViT-encoded visual embeddings and the encoded question must be 
combined to form a joint representation. This integration may involve concatenation, attention 
mechanisms or other fusion techniques to effectively merge the two modalities. This joint 
representation is then used as input to the GPT-2 decoder. We will adapt our model for use in 
the VQA task in the near future. To give a perspective of the developed model’s size, it 
incorporates about 239.000.000 parameters. Figure 3.19 illustrates our architecture. 
 

 
Figure 3.19. The architecture with ViT encoder and GPT2 decoder for the IC task 

 

Training and results 
Objective of the training process is to minimize the difference between the predicted caption 
generated by the GPT-2 decoder and the ground truth caption associated with the input image. 
This involves using a suitable loss function, in this case the cross-entropy loss, to measure 
the dissimilarity between the predicted and actual sequences of tokens. We need to mention 
here that, like in many other cases, this loss function (albeit differentiable) may not be very 
good at capturing the task’s nuances and correlate highly with the better-suited metrics (like 
OURS). The optimization of the loss function is being handled by AdamW [Loshchilov & Hutter, 
2017] with a linearly diminishing Learning Rate (LR) as the epochs progress. For training, we 
used 64.172 samples and for testing 31.156. Periodically, every 10 epochs, we evaluate our 
model on 10 metrics. The standard BLEU, ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-
Lsum, and our own devised metric in all its variations OURS1-A, OURS2-A, OURS3-A, OURSMAX-

A and OURSMAX-B. In Table 3.13, we present in detail the results of our model’s evaluation 
study across a training session of 50 epochs, that took around 100 hours of processing on 2x 
Nvidia RTX 3090 24GB GPUs. 
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Table 3.13: Evaluation scores on the test-set and training loss across training epochs 

Evaluation 
Metric 

Training Epoch 
10 20 30 40 50 

BLEU 0,1499 0,1516 0,1515 0,1521 0,1533 
ROUGE-1 0,5183 0,5196 0,5195 0,5196 0,5202 
ROUGE-2 0,4570 0,4594 0,4597 0,4601 0,4607 
ROUGE-L 0,4996 0,5014 0,5018 0,5017 0,5022 
ROUGE-Lsum 0,5183 0,5196 0,5194 0,5196 0,5202 
OURS1-A 0,4300 0,5900 0,6000 0,5900 0,6200 
OURS2-A 0,3100 0,4700 0,4800 0,4700 0,5000 
OURS3-A 0,1800 0,3400 0,3500 0,3400 0,3700 
OURSMAX-A 0,1770 0,3370 0,3470 0,3370 0,3670 
OURSMAX-B 0,1560 0,3160 0,3260 0,3160 0,3460 
Training Loss 0,008 0,0017 0,005 0,002 0,001 

 
As it is evident from Figure 3.20, the model keeps improving until the designated completion 
of the experiment. Note that, this training session's length is chosen for the purposes of this 
deliverable document. The actual model to be released will be left to train for a couple-
hundreds of epochs. Delving into the details, we observe the typical phenomenon where the 
model showcases a rapid initial improvement until around 20 epochs (both regarding the train-
set loss and the test-set evaluation metrics), and then the progress slows-down, partially due 
the gradual decrease of the Learning Rate by the linear scheduler. Interesting is that, although 
the loss value fluctuates quite a lot between 20 and 40 epochs into the training, the evaluation 
metrics do not follow this trend, remaining almost constant for these 20 epochs and then 
improving further, together with the further decrease of the loss (possibly escaping out of a 
local minimum), hinting at the healthy behaviour of the session. 
 

 
Figure 3.20. Progression across training epochs of a) standard evaluation metrics,  

b) variants of OURS metric and c) the respective training loss 
 
Decomposing the evaluation metrics’ behaviour, we observe that all the 5 standard and the 5 
variants of OURS improve across training, though to different extend. The BLEU, ROUGE-1, 
ROUGE-2, ROUGE-L and ROUGE-Lsum metrics improve marginally, while OURS1-A, OURS2-

A, OURS3-A, OURSMAX-A and OURSMAX-B improve at a healthier rate. This is particularly aligned 
with our manual observations of the generated captions that, indeed, seem to improve. As 
regards the behaviour of the different variants of OURS metric, we conclude that they follow 
their theorized trend. As it was expected, the OURS1-A variant achieves the highest accuracy 
of all (62% at epoch 50), since it evaluates only the first-generated caption of the model for 
each image. It is reasonable to expect that the more words we pump out of the model the 
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more it will fail and, consequently, all other variants of OURS may showcase lower accuracy. 
This can be attributed to the autoregressive nature of GPT-2 where each new word is 
conditioned on the previous ones, and thus any errors accumulate leading to ever-increasing 
chance of generating nonsense. Indeed, as the results suggest, each other variant of OURS 
that considers more sentences (2, 3 and the maximum the model can produce for an image - 
the MAXi) shows lower accuracy. Interestingly, we observe that past the first 3 generated 
captions per image considered, the accuracy of the model seems to not drop further, rather 
stays constant. 
 
Furthermore, to study the difference between our proposed metric and the conventional 
metrics of the field and the potential usefulness of our metric, we conducted as small study 
examining all of its variants’ correlation with the rest of the metrics, as well as the correlation 
between all of them for the sake of completeness. What can immediately be noticed is the 
highly positive correlation of all the standard metrics with each other. We can safely assume 
that, at least in our specialized dataset, good score in either of the BLEU, ROUGE-1, ROUGE-
2, ROUGE-L and ROUGE-Lsum metrics would possibly translate to a good evaluation score in 
any of them. This behaviour is supported in literature, and is reasonable, given that they were 
all developed to evaluate similar linguistic scenarios. At the same time, all the variants of 
OURS metric showcase strong positive correlation with each other as well, behaviour equally 
reasonable given their similar workings. Reaching to the very core of our study, the most 
valuable finding and primal motive behind its conduction is that the OURS metric, in all of its 
variants, behaves independently to the rest of the existing established metrics. This fact 
strongly supports that, at least in the context of our specialized needs, the OURS metric 
succeeds in capturing a facet of the performance envelop which evades the rest of the well-
known metrics; ultimately justifying its creation. Table 3.14 presents these results, where 
green coloured cells indicate positive correlation, red coloured cells indicate negative, and the 
white tones in-between suggest independence between the examined metrics. 
 

Table 3.14. Pearson correlation coefficients between all evaluation metrics. 
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3.3.4. Next Steps 
In the prospect of the upcoming pilots, the Open Calls and the maturation of the project 
towards its completion, we have set a number of actions we plan to take in order to progress 
successfully. 
 

1. We will let our model train further to some hundreds of epochs and then pack it into a 
new Dockerized service, updating the project’s toolchain. Furthermore, we will release 
it on the Hugging Face project repository, creating the first publicly available entry of 
our VL models. The new endpoint to be added to the project’s API for inferencing this, 
will be “/rgb-language_cap”. 

2. Apart from the IC task, we will extend the use of our Vision (RGB)-Language model to 
the VQA task. This will happen with training on our created Q&A dataset and some 
minor architectural changes. The new endpoint to be added to the project’s API when 
the new model is ready, will be “/rgb-language_vqa”. 

3. In collaboration with 2 of our use cases’ developers (AR Theatre, Virtual Conferences), 
we will capture and manually annotate 2 datasets with realistic views and actions from 
their scenarios, to finetune our models to the downstream tasks. 

4. We will begin the development of our 3D-Language and possibly Video-Language 
models, utilizing the depth dataset we already created and new datasets that we will 
create with material from the project’s pilots. The new endpoints to be added to the 
project’s API upon completion of the new services, will be: “/3d-language_cap", “/3d-
language_vqa", “/video-language_cap" and “/video-language_vqa". 

5. Our current notion of the spatial relationships between the objects is coarse and 
relative in nature; hence we describe them only with “left”, “right”, “above”, “below”, “in 
front of” and “behind”. Our aim is to explore the potential generation of “metrically 
accurate” descriptions of the scene by training the models on captions that contain 
textually the distances between the objects (I.e. “The cat is three meters to the left of 
the bus”). In order to acquire the large amounts of metrically annotated data we need 
to train our models on, we will investigate the creation of a synthetic dataset in which 
we can accurately manipulate the placement of the objects to create metrically 
accurate captions for a limitless number of arrangements. 

6. In case we succeed with the creation of our metrically accurate VL models, we will 
need to extend our metric, or even devise a new one, in order to capture correctly the 
newly added feature of the predictions. 

7. We will release our spatially aware extension of the COCO dataset to the public. 
 

3.4. Conversation Agents (CA) 
In VOXReality, we aim to develop two conversation agents with two different tasks: 1) VR 
Conference Conversation Agent and 2) AR Training Assistant. 

3.4.1. VR Conference Conversation Agent 
The VOXReality VR Conference Conversation Agent is specifically designed to enhance the 
user experience at the conference, serving a multifaceted role. It is tasked with guiding users 
through the conference venue, providing essential information about the conference program, 
and offering insights into the trade show. 
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In this section we present the methodology followed for the implementation of this 
conversation agent. We explain in this section the creation of a robust Natural Language 
Understanding (NLU) model, creation of a dataset and extending it to the fine-tuning process 
of the model to ensure its effectiveness and accuracy in understanding and processing user 
queries, the mechanisms behind the conversation agent's workflow and the fine-tuning 
process applied specifically to the conference agent to provide accurate navigational 
assistance within the VR conference environment. 

Natural Language Understanding (NLU) Model 
The primary objective of the NLU model is to accurately determine whether a user's query is 
related to seeking navigation guidance within the conference venue, inquiring about the 
conference schedule, or requesting insights about the trade show. It’s important to note that 
while this model plays a crucial role in the research phase, it is not directly integrated into the 
final workflow of the conference’s conversation agent. However, it is planned to be made 
available for future open calls, offering broader applicability and utility. 
 
Model Selection  
In the dynamic landscape of NLU, the selection of an appropriate model is a critical decision 
that significantly impacts the success of language processing tasks. The T5 model, known for 
its exceptional adaptability and flexibility, has emerged as a leading choice for handling a wide 
array of NLU challenges. Its ability to seamlessly adjust to various linguistic tasks, coupled 
with a unified methodology, greatly eases the process of integrating it into different systems. 
This makes the T5 model not only highly efficient but also remarkably adaptable in addressing 
the diverse needs of NLU applications. 
 
For the navigation assistant task, the model that was selected is the T5-Small. This choice 
was guided by the nature of our NLU task, which does not necessitate the advanced 
capabilities of more substantial models. The T5-Small perfectly meets our requirements, 
striking an optimal balance between performance and computational efficiency. It adeptly 
handles the language processing needs with the right level of complexity, ensuring both 
accuracy and resource economy. Thus, the T5-Small emerges as the most fitting solution for 
our NLU objectives, providing just the right mix of efficiency, affordability, and computational 
effectiveness. 
 
Dataset Description 
To develop a stable NLU model using T5-Small, the creation of a dataset tailored to specific 
use cases is essential. Following the dataset structure utilized by Convlab-3 [Zhu et al., 2022] 
for training, the Multiwoz [Budzianowski et al., 2018] dataset was beneficial for ensuring well-
structured and appropriately formatted data. Each dataset sample starts with a user query, 
which is a question directed at the model. For example, a query might be: "Can you find an 
Indian restaurant for me that is also in the town center?" The corresponding label for this query 
is "[inform][restaurant]([area][center], [food][Indian])". This labelling system denotes the 
general user intent, such as seeking information about a restaurant, and specific details like 
desired location and food preferences. A sample data from the NLU dataset is presented 
below: 
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Inspired by the structure of Convlab-3's dataset, a new dataset is created with a similar format. 
This dataset is designed to train a model specifically for a conference assistance application, 
where it is expected to deliver navigational guidance within the conference venue, details 
about the conference program, and offer insights about the trade show, including information 
on the participants and their respective products. Each sample begins with the "context" field, 
containing the user's query. Following this is the "dialogue_acts_seq" field, which holds the 
corresponding label for the query. This label is crucial for the model to discern the user's initial 
intent, such as seeking directions, program details, or trade show information.  
 
The structure of the rest of the label varies depending on this intent. For navigation-related 
queries, the label is designed to identify the user's desired destination. If the destination is not 
specified in the user's query, the label marks the destination as "unspecified". At this point, it 
should be mentioned that the destinations are unrelated to the rooms of the conference venue 
of our use case. This approach is adopted to provide the model with a generalized capability, 
ensuring it does not only learn to identify specific rooms but can adapt to a variety of scenarios. 
Similarly, for program information queries, the label is structured to extract all related details 
from the user's request. For instance, as shown in the example above under the program 
information category, if a user asks about when an event ends, the label includes "end_time" 
to indicate the user's interest in the event's end time and the event's name. The trade show 
examples are set up in a similar way to the program information, organizing labels to gather 
detailed information from questions about the trade show. 
 
The dataset, comprising 498 human-annotated samples, is evenly distributed across three 
categories: navigation, program information, and trade show, with each category containing 
166 distinct samples. This dataset is divided into training, validation, and test sets. For the 
training set, 100 samples from each category are selected, totaling 300 samples, while the 
test and validation set includes 99 samples. This approach not only ensures a balanced 
representation of each category within the dataset but also maintains the quality and relevance 
of the annotations. Detailed information of the data distribution is presented in Figure 3.21. 

 
Figure 3.21. Data distribution across categories 
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Model Fine-tuning Process 
The fine-tuning of the T5-small NLU model is carried out using the Convlab-3 platform, 
specifically designed to adapt different sizes of the T5 model to custom datasets. Convlab-3's 
robust framework provides an integrated solution for the entire fine-tuning process, ensuring 
that the model is optimally trained for the task. 
 
The initial step in the model training process involves a comprehensive pre-processing phase, 
crucial for adapting the dataset for effective use with the T5 model. This phase includes 
tokenizing both the input queries and the target responses, vital for converting natural 
language into a format suitable for the T5 model's processing. In addition to tokenization, the 
Convlab-3 platform efficiently manages the challenges of padding and truncation. Moreover, 
the platform also includes an evaluation process as part of the training pipeline, involving 
testing the model on unseen data to measure metrics such as the F1 score, which provides 
insights into the precision and recall of the model’s predictions. 
 
Experimental Results 
To guarantee a structured and efficient training procedure, a step-by-step method is 
implemented. The model is first fine-tuned and evaluated using only the navigation category 
samples. This focused approach allows for detailed monitoring of the model’s performance in 
a specific context. For the navigation category, 100 samples are used for training, with 33 
samples each allocated to testing and validation. The results from this initial phase were highly 
encouraging, with the model achieving an F1 score of 90.4%. Following the success in the 
navigation category, the same fine-tuning process was applied to the program information and 
trade show categories. The model continued to exhibit strong performance, achieving F1 
scores of 91.8% and 95% in these categories, respectively. This demonstrates the model's 
adaptability and effectiveness across different types of user queries. 
 
In the final phase of training, samples from all categories are combined to provide a 
comprehensive dataset. This allows the model to be trained across a broader spectrum of 
queries, simulating more closely the variety it would encounter in real-world applications. The 
overall F1 score for the model, after being trained on this combined dataset is 95.2%. The 
detailed results of these training phases, illustrating the model’s performance across different 
categories and in the comprehensive dataset, are presented in the Table 3.15. 

Table 3.15. Experimental results of the NLU model 
Category Accuracy (%) Precision (%) Recall (%) F1 score (%) 

Navigation 89.9 90.4 90.4 90.4 
Program information 88.4 90.3 93.3 91.8 

Trade show 95 95 95 95 
All Categories 94 94.3 96.1 95.2 

 

Conversation Agent  
For the Conference Dialogue Agent, the Llama2-Chat 7B model was selected. This model, is 
specifically designed for chat and dialogue scenarios, making it a natural fit for an agent 
focused on conversational interactions in a conference setting. The 7B version of the Llama2-
Chat model stands out for its efficiency and effectiveness. It is particularly well-suited for 
environments where computational resources might be limited or for applications that need to 
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be cost-effective. This is a crucial consideration for deployment in varied settings, where the 
availability of resources can significantly impact the functionality of the agent. 
 
Another key aspect of the 7B model is its ability to provide fast response times. In a conference 
environment, where interactions are real-time and often require quick exchanges, the speed 
of the model is essential. The model is designed to maintain a fluid and natural conversation 
flow, a critical factor in ensuring user engagement and satisfaction. Despite its relatively 
smaller size compared to the other models in the Llama2-Chat range, the 7B version does not 
compromise on performance. It can handle the spectrum of queries and interactions, from 
basic informational requests to more complex dialogue. This model can efficiently manage 
basic to moderately complex dialogues, ensuring effective communication without the need 
for the computational resources demanded by larger models. 
 
In summary, the Llama2-Chat 7B model is a well-rounded choice for the Conference Dialogue 
Agent. It strikes a balance between efficiency, speed, and performance, aligning well with the 
practical requirements of a conference environment. This model's capabilities ensure that the 
agent can handle a variety of interactions effectively, making it a suitable tool for enhancing 
the conference experience through intelligent and responsive communication. 
 
Workflow Description 
Designing the conference agent's workflow presented a significant challenge due to its 
complex, multi-stage response generation process. To address this, the LangChain 9 
framework is utilized. LangChain is an innovative, open-source Python library that simplifies 
building applications with language models like GPT-3 from OpenAI. It employs "chains," 
which are sequences of modular components, enabling flexible and efficient construction of 
language-based applications. This framework stands out for its versatility, allowing for the 
integration of different processing stages, such as context management, response generation, 
and post-processing. Such modular design makes LangChain particularly advantageous for 
creating intricate language interactions and tailoring them to specific needs.  
 
The workflow for the conference agent (Figure 3.22), is a multi-stage process. It consistently 
employs a single model, the Llama2, across its chains. Initially, a brief overview of each 
component is presented, followed by a more detailed explanation in the following subsections.  

 
Figure 3.22. Conference agent workflow 

 
 

9 https://github.com/langchain-ai/langchain 
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The first chain employs the model to analyse user input, categorizing it into three distinct types: 
navigation, program information, and general queries. The 'navigation' type refers to user 
requests for directions to a specific room. In case that the model intent is navigation, the 
second chain follows that determines the user's intended destination. This step is crucial for 
integrating with Mozilla Hubs  to identify the shortest path to the desired location. Once the 
shortest route is established, the third chain takes the navigation instructions and delivers the 
response to the user. In the second scenario, the 'program information' category involves 
queries about the conference schedule. In this case, Llama2 relates to a pdf file where the pdf 
file includes the program of the conference. In this case, chain 4 is activated by combining 
user’s input and the information of the pdf file response to the user. Lastly, the 'general' 
category handles all other user inquiries not related to directions or program details. 
 
Intent Recognition 
When a user poses a question, the initial and crucial step for the agent is to accurately identify 
the user's input. This initial step is the key to ensuring that the subsequent process and 
response align correctly with the user's query. If the model misinterprets the user's intent, the 
resulting answer will likely be unrelated to the original question. To successfully build an intent 
recognition model using Llama 2, the capabilities offered by LangChain are utilized. 
LangChain provides a specialized feature for developing prompt templates based on few-shot 
examples. This process involves creating several task-specific examples. These examples, 
coupled with a system prompt, enable the model to adeptly handle the desired task. In 
essence, this feature is providing by the FewShotPromptTemplate function, and it is a powerful 
tool for creating structured, example-based prompts that guide the model's responses in a 
specific and controlled manner, making it highly useful for complex querying and data 
processing tasks. 
 
For the conference agent's intent recognition task, the model is designed to face a 
classification problem. Based on the user's input, it must categorize the query into one of three 
labels: 'navigation', 'program information', or 'general'. To assist the model in this process, 
specific examples were initially created to guide its comprehension and enhance its ability to 
accurately classify queries. A few examples for intent recognition task are presented below: 

 
 
In addition to these examples, a carefully selected system prompt is employed to further guide 
the model's focus. This prompt was finalized after experimenting with various combinations to 
determine the most effective one and outlines the task for the model, ensuring that it focuses 
on categorizing the query into the correct label without providing extraneous details. 
 
Destination Recognition 
The approach used for intent recognition was similarly applied to destination recognition. In 
this scenario, the model's objective is to pinpoint the user's desired destination based on their 
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input but also to have the ability to recognize if the requested destination is not part of the 
conference venue. Utilizing few-shot prompting examples, user inputs are paired with their 
corresponding correct outputs that the model is expected to generate. A crucial part in this 
process is the system prompt. Through a meticulous prompt engineering process aimed at 
identifying the most effective system prompt for this specific use case. A few examples for the 
destination recognition task are presented below: 

 
 
In the prompt, the labels represent all the available locations within VOXReality’s conference 
venue. It is designed to be adaptable, meaning that the prompt can be modified to suit different 
conference venues with their respective unique rooms. Additionally, the prompt specifies that 
if the user requests a destination not listed in the venue's specific configuration, the response 
should be classified as “no location.” This feature ensures that the model remains adaptable 
and applicable across various settings, providing accurate and relevant responses based on 
the particular layout and offerings of each conference venue. 
 
Navigation Agent 
The navigation agent is a key component within the workflow of the conference dialogue 
agent. The agent handles two types of input: user queries and Mozilla Hubs' navigation 
instructions. To formulate an appropriate response, the model integrates these two inputs. 
Mozilla Hubs provides navigation instructions that are necessary for guiding users effectively. 
These instructions form the core of the navigation process, ensuring users reach their desired 
destinations accurately. The types of instructions are: 
 
• Turn around: Typically, the initial instruction, this directive assists users in aligning 

themselves correctly at the onset of their journey. It ensures that the user starts from the 
correct orientation, which is crucial for the accuracy of subsequent directions. 

• Move [number] meters: This command specifies a precise distance for the user to travel 
in a straight line. It provides clarity on how far to proceed before the next action, aiding in 
maintaining a clear and measured progression along the route. 

• Turn right/ left: These instructions guide the user in making accurate turns. Whether a 
right or left turn, they play a critical role in keeping the user on the intended path and 
preventing deviations that could lead to confusion or longer routes. 

• Stairs up/ down: These commands are particularly important for vertical navigation. They 
direct users when ascending or descending stairs, ensuring safe and efficient travel 
between different floors or levels within the environment. 

 
The model's ability to seamlessly blend user queries with these structured navigation cues is 
what makes the navigation agent essential to the overall efficiency and effectiveness of the 
conference dialogue agent in a Mozilla Hubs environment. 
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To optimize a user-friendly agent’s behaviour in handling navigation inputs, a specialized 
system prompt is implemented. This process, known as prompt engineering, involves 
rigorously testing various system prompts to ensure that the model generates the most 
effective responses. The chosen prompt aids the model in addressing situations where user 
instructions are either uncertain or involve requests for non-existent locations within the 
conference venue. It is especially helpful in guiding the model during scenarios where the user 
either fails to specify a destination or selects an unavailable one. In such instances, the prompt 
instructs the model to inform the user about the available rooms at the venue.  
 
The navigation agent is a crucial component of the conference dialogue system, adeptly 
handling user queries and Mozilla Hubs' navigation instructions. Its advanced integration and 
prompt engineering process enable it to adapt to various conference venues, providing precise 
and relevant navigational assistance. This adaptability marks a significant advancement in 
virtual assistance, enhancing user experiences in complex virtual environments like Mozilla 
Hubs.  
 
Program Information Agent 
The program information agent functions as a part of a larger system designed to interpret 
and respond to user queries about conference program details. Initially, if the user’s input is 
identified as program information from the intent recognition component, the program 
information agent activates.  
 
Specifically, the agent is using the Retrieval QA function provided from Langchain. The agent 
is connected to a comprehensive database, typically a PDF file, which contains detailed 
information about the conference program. Using advanced search and retrieval techniques, 
the agent scans this document to locate the exact information relevant to the user's question. 
The strength of this system lies in its ability to parse large volumes of text data and extract 
specific pieces of information. The agent, by understanding the context in which they appear, 
ensures that the responses are accurate and relevant to the user's query.  
 
In line with the system's guiding prompt, the agent is directed to be a helpful navigator, 
focusing on delivering accurate, concise, and reliable information. This prompt ensures that 
responses are direct and contain only the necessary details asked by the users. The agent’s 
primary mission is to assist users by providing detailed information about the schedule, 
speakers, events, locations, and other specific details included in the conference program. 
This approach ensures that users receive quick, accurate, and contextually relevant answers 
to their questions about the conference program, enhancing their experience and making 
information access more efficient. 
 
General Agent 
The final element in the system's workflow is the general agent, a component designed to 
address a wide range of user inquiries that fall outside the specialized functions of other 
agents, such as navigation or specific conference program details. This agent comes into play 
when the intent recognition component classifies an inquiry as 'general'. 
 
In its operation, guided by a carefully structured system prompt, the general agent's primary 
objective is to enhance the overall user experience. It achieves this by delivering clear, precise 
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guidance, informing users about the types of assistance it can offer. This approach is 
strategically focused on ensuring that users receive assistance that is not only relevant but 
also precisely aligned with their immediate queries and requirements. 
 
The essence of the general agent's role is to facilitate an interaction that is both efficient and 
user-friendly. By providing succinct, relevant responses, it helps users navigate their queries 
with ease, making the process of obtaining information seamless and straightforward. The 
general agent, with its broad scope and user-centric design, is therefore an indispensable part 
of the system, ensuring that users' general inquiries are addressed promptly and effectively. 

Fine tuning of the navigation agent 
While the model initially performed well in delivering navigation instructions, some problems 
appeared. Firstly, one of the primary concerns was the variability in answer format. This 
inconsistency not only creates a lack of uniformity across different responses but also 
potentially leads to confusion for users. For example, some answers may be presented in a 
detailed, step-by-step manner with clear numerical ordering, while others might be more 
narrative in style, lacking clear separation of steps.  
 
Secondly, it included unnecessary navigation details that potentially misinformed the users. In 
the context of the example presented belowError! Reference source not found., phrases 
like “Face the direction you came from,” “until you reach the next landmark,” and “The height 
difference is approximately 5 meters” were extraneous and not pertinent to the conference 
venue, adding confusion. Lastly, the incorporation of too much non-essential information 
resulted in overly lengthy responses, which could be incomprehensible for users. 

 
 
Considering these challenges, and after various system prompts were tested without 
achieving the desired format in navigation responses, a comprehensive fine-tuning process 
was initiated. The fine-tuning process was implemented not only to address the specific 
formatting issues identified in the responses but also to enhance the overall clarity and 
usability of the guidance provided by the agent. This step was essential for the system's 
evolution, ensuring that the navigation instructions provided were both user-friendly and in 
alignment with the intended navigational objectives. 
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The following subsections will delve into the specifics of the fine-tuning process, describing 
from the dataset creation process to the strategies and methodologies employed to refine the 
system's capabilities and achieve the desired level of performance and user experience. 
 
Dataset Description 
The creation of an extensive dataset was a fundamental step in the development of the 
navigation agent. This carefully structured dataset is comprised of three main components, 
each playing a vital role in ensuring the agent's effective response to user queries with 
accurate and useful navigation instructions. 
 
Firstly, the dataset starts with the "input" field, which includes a wide variety of user questions. 
These queries, ranging from specific requests like "Guide me to the gym" to more general 
ones such as "I am completely lost, how do I reach the parking lot?", are designed to replicate 
a wide range of real-world scenarios. The inclusion of such a varied set of queries is crucial 
for training the agent to manage numerous types of interactions within a virtual environment. 
A key feature of the dataset is that it contains queries about a variety of rooms and places, 
not limited to those in the VOXReality conference venue. This strategy is intended to provide 
the model with a level of generalizability, equipping it to handle a diverse range of queries that 
might arise in different virtual environments. 
 
The second component, the "knowledge" field, consists of real navigation instructions directly 
sourced from Mozilla Hubs. This essential part of the dataset includes actual navigation data, 
formatted as they appear in Mozilla Hubs, as mentioned in the previous subsection. 
Incorporating these real navigation instructions into the dataset is crucial to ensure that the 
agent is fine-tuned with accurate and authentic navigation patterns for effective and precise 
guidance. 
 
The third field is the model’s output, which is the agent's navigational guidance in response to 
the user's query. This output is designed to be clear and concise, prioritizing straightforward 
navigation instructions and avoiding any unnecessary or confusing details. The primary aim 
here is to ensure that the agent's responses are user-friendly, helping users efficiently reach 
their intended destinations. 
 
The dataset prepared for the navigation agent consists of 100 carefully selected samples for 
training purposes and an additional 40 samples specifically designated for testing model’s 
performance. Each of these samples has undergone meticulous annotation by human experts, 
a process that is essential for the dataset's quality. The careful annotation process also serves 
to validate the relevance and applicability of each navigation instruction within the given 
“knowledge” field. The following examples showcases two examples from the dataset, 
providing a clear representation of how each sample is structured and annotated. 
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In summary, the well-organized structure and intensive annotation of the dataset are 
instrumental in the fine-tuning process of the navigation agent. The objective is to enhance 
the agent’s ability to process diverse user inputs, combine them with structured navigation 
instructions, and generate clear and effective responses. Such fine-tuning process is 
necessary for improving user experience in virtual space navigation, ensuring the agent offers 
precise and user-friendly assistance. 
 
Fine-tuning process 
In the fine-tuning process of the navigation agent, which utilizes the Llama-2 model, the Low-
Rank Adaptation (LoRA) [Hu et al., 2021] method was used. The choice of LoRA for fine-
tuning was based on its effectiveness and efficiency in adapting large-scale neural networks 
like Llama-2 to specific tasks. LoRA is particularly suited for this purpose due to its core 
principle of matrix factorization and low-rank approximations. This approach allows for the 
simplification of complex, highly parameterized layers in the neural network into more 
manageable structures. Figure 3.23 demonstrates LoRA during and after training, showcasing 
how this approach simplifies complex, highly parameterized layers in the neural network into 
more manageable structures. Such simplification is crucial for isolating and modifying the most 
influential features of the model without the need for extensive retraining. 
 

 
Figure 3.23. Illustration of LoRA during and after training 

 
The use of the LoRA technique in refining the navigation agent is based on its effectiveness 
in tailoring neural networks for new challenges. LoRA accomplishes this by adding task-
specific parameters but keeping the overall size manageable. This method is especially 
beneficial for the navigation agent because it allows for flexibility and efficiency in processing, 
which is vital for training substantial models like Llama-2 without excessive computational 
requirements. 
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After conducting experiments with various combinations of model parameters, the final 
selection for fine-tuning the model involved using 24% of all the model's parameters. This 
specific proportion of parameters was found to be the most effective in striking the right 
balance between model performance and computational efficiency.  The fine-tuning process 
of the navigation agent yielded promising results (Figure 3.24). During the training epochs, 
both the training and validation loss showed a steady downward trend, signaling 
enhancements in the model's accuracy and its ability to generalize to new data. Specifically, 
the training loss exhibited a steep decrease, suggesting that the model was effectively learning 
the navigation tasks. Meanwhile, the validation loss also decreased, at a slower rate, which is 
a positive sign of the model's ability to adapt to new, unseen data. This reduction in loss across 
epochs demonstrates the effectiveness of the fine-tuning process, enabling the model to retain 
previously learned information while successfully acquiring new navigational knowledge. 
 

 
Figure 3.24. Training and validation loss per epoch 

 
Evaluation Process 
The evaluation of the navigation agent posed a complicate challenge, given the complex 
nature of the task. A comprehensive evaluation required careful consideration of two key 
aspects. Firstly, it was essential to confirm that the model accurately replicated each 
navigation instruction from Mozilla Hubs without omissions. This step is crucial to confirm the 
model's reliability in conveying complete navigational guidance. Secondly, the model's output 
needed to be compared with the ground truth in the test set to ascertain its accuracy. The 
proximity of the model's responses to this ground truth serves as a measure of its 
effectiveness in providing precise navigational directions. 
 
So, the first evaluation process was to ensure that the model generated all the navigation 
instructions. To evaluate the performance of the model the semantic knowledge similarity 
(SKS) between the provided knowledge and the output of the model is compared. Specifically, 
the “all-MiniLM-L6-v2” sentence transformer was utilized. This model developed by the 
Sentence Transformers project [Reimers & Gurevych, 2019], which specializes in providing 
dense vector representations for sentences and paragraphs. These representations can be 
used in various NLP tasks such as clustering, semantic search, and information retrieval. 
 
This model is based on the MiniLM architecture, which is known for its small size and efficient 
performance. The "L6" in the name indicates that the model has 6 layers, making it smaller 
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and faster than larger models with similar capabilities. The model has been fine-tuned on a 
diverse and extensive dataset, consisting of over 1 billion sentence pairs, which contributes 
to its ability to understand and encode a wide range of sentences effectively. The model allows 
to encode batches of sentences, effectively converting textual information into numerical data 
that capture the semantic essence of the sentences. 
 
To enhance the model's accuracy for the designated task, a fine-tuning process was 
implemented of the “all-MiniLM-L6-v2” model. This involved developing a specialized dataset 
comprised of three distinct sections: "anchor," "positive," and "negative." The "anchor" field 
contains the navigation instructions as issued by Mozilla Hubs. The "positive" field includes 
the correct rendition of the navigation instructions, ensuring completeness without omitting 
any details. Conversely, the "negative" field contains outputs that are similar with the "positive" 
instructions but with certain elements either missing or modified. For instance, in the example 
below, one "negative" field might involve misdirections such as “Turn left” with “Turn right” and 
changing the moving distance from “10 meters” to “8 meters.” Another example of the figure 
shows a complete omission of a step. The construction of this dataset improves the capability 
of the model to recognize the errors, such as missing or incorrect navigation instructions. 

 
 
For the training and testing of this fine-tuning process, the dataset comprised 80 training 
samples and 30 test samples. This number of samples was chosen to provide a balance 
between comprehensive coverage of different scenarios and maintaining a manageable 
dataset size for efficient training and evaluation. 
 
The effectiveness of the fine-tuning process was evaluated using three distinct metrics to 
measure accuracy, each providing a unique perspective on the model’s ability to generate 
semantically similar sentence embeddings. The first metric employed was the cosine distance, 
which calculates the cosine of the angle between two vectors in a multi-dimensional space. In 
addition to cosine distance, the Manhattan and Euclidean distances were utilized. The 
Manhattan distance measures similarity by summing the absolute differences between 
coordinates of the vectors. On the other hand, the Euclidean distance measures the direct 
straight-line distance between two points in Euclidean space, giving a sense of the "ordinary" 
distance one would intuitively consider between points. The purpose of these evaluations is 
to understand how well the model is performing in terms of sentence similarity using different 
measures of distance. The usage of all three metrics helps to get a comprehensive view of 
the model's performance, as each distance measure captures different aspects of similarity. 
The evaluation results on the test dataset are presented in Table 3.16. 
 

Table 3.16. Evaluation of sentence-transformers fine-tuning process with sentence similarity 
Cosine Similarity (%) Manhattan Distance (%) Euclidean Distance (%) 

90 89.9 90 
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The evaluation of the navigation agent incorporated the fine-tuned sentence transformer 
model, specifically aimed at ensuring the agent's capability to generate all required navigation 
instructions comprehensively, without any omissions. For this purpose, the evaluation process 
involved a comparison of the provided navigation instructions with the outputs generated by 
the agent, followed by the calculation of their cosine similarity. Additionally, semantic textual 
similarity (STS) was evaluated using the original "all-MiniLM-L6-v2" model, by comparing the 
ground truth responses with those produced by the fine-tuned model. Moreover, the Rouge 
score was also employed as a metric in this evaluation process. The inclusion of the Rouge 
score provided an additional layer of assessment regarding the preciseness and 
completeness of the generated instructions. It helped in estimating how well the model's 
outputs aligned with the key information presented in the original navigation instructions.  
 
To benchmark the effectiveness of the fine-tuning process, a comparative evaluation was 
conducted between the original Llama 2 model and the fine-tuned. This assessment aimed to 
highlight the enhancements achieved through the fine-tuning. The results of this 
comprehensive evaluation are presented in Table 3.17. The table offers a detailed 
comparison, showcasing the performance of both models across various metrics.  

 
Table 3.17. Evaluation of navigation agent before and after fine-tuning 

Phase Rouge-1 (%) Rouge-2 (%) Rouge-L (%) SKS (%) STS (%) 
Before  33.1 17.2 29.4 85.1 92.2 
After  68.9 42.3 60.5 95.7 97.3 

 
Evaluation of the Workflow before and after fine-tuning 
Moving forward in the development process of our workflow with the fine-tuned Llama 2 model, 
we directed our focus towards a critical evaluation phase. This was particularly pertinent with 
the fine-tuning efforts that had been applied to the Llama2 model, as we aimed to 
comprehensively understand the influence of these modifications on the model’s performance. 
It was imperative to understand the impact of the fine-tuning process on the model's 
performance in crucial workflow tasks. This phase of evaluation was especially focused on 
tasks such as intent and destination recognition. 
 
To ensure the accurate classification of user intent by the model, an extensive evaluation 
process was implemented. This process began with the creation of an evaluation dataset, 
comprising 99 carefully selected samples, evenly distributed with 33 samples for each of the 
three categories. Once the evaluation dataset was established, each user query from the 
dataset was inputted into the model to generate responses. The effectiveness of the model 
was then determined by comparing these responses against the ground truth labels provided 
in the dataset. Key performance metrics such as accuracy, precision, recall, and F1 score 
were calculated to provide a comprehensive assessment of the model's performance.  
 
To ensure a comprehensive assessment, the evaluation process was conducted on both the 
original Llama 2 model and its fine-tuned version. This was crucial to verify that the fine-tuning, 
while enhancing the model's performance for navigation instruction tasks, did not compromise 
its effectiveness in other areas. The goal was to maintain the model's versatility and ensure 
its proficiency across a broad spectrum of tasks, not just those it was specifically fine-tuned 
for.  
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In the evaluation of the Intent Recognition task, the results post-fine-tuning showed a decrease 
in key performance metrics compared to the pre-fine-tuning phase. Specifically, there was a 
reduction in accuracy, precision, recall, and F1 score. This decline suggests that while the 
fine-tuning process targeted certain aspects of the model's functionality, it may have had 
unintended effects on its ability to perform in the intent recognition task. It's important to 
recognize that such outcomes are part of the iterative process of model development and 
refinement. Future iterations and enhancements are expected to address these areas, aiming 
to strike a balance between specialized improvements and overall task proficiency. The results 
are presented in Table 3.18. 
 

Table 3.18. Evaluation of intent recognition agent before and after fine-tuning 
Phase Accuracy (%) Precision (%) Recall (%) F1 score (%) 
Before 85.8 86.1 85.8 85.8 
After 79.7 80.4 79.7 79.7 

 
For the destination recognition task, a similar evaluation method to the one used for intent 
recognition was implemented. A dataset with 100 samples, evenly distributed across various 
destination categories, was used to assess the model's performance. Additional samples were 
included in the 'no location' category to test scenarios involving non-existent locations within 
the building, as previously mentioned, and instances where users request navigation guidance 
without specifying a destination. This evaluation process involved analyzing the model's 
responses to the dataset queries and comparing them with the correct labels. The key metrics 
accuracy, precision, recall, and F1 score were calculated again for the original Llama 2 model 
and the fine-tuned version, and the results are succinctly presented in Table 3.19. 
 

Table 3.19. Evaluation of destination recognition agent before and after fine-tuning 
Phase Accuracy (%) Precision (%) Recall (%) F1 score (%) 
Before 98 98.1 98 97.8 
After 97 97.1 97 96.8 

 
In the case of the destination recognition task, the performance metrics post-fine-tuning 
remained robust, showing no significant drop in effectiveness. The accuracy, precision, recall, 
and F1 score maintained high levels, with only marginal variations observed. This consistency 
indicates that the fine-tuning process did not adversely affect the model's ability to perform in 
the destination recognition task. Such stability in performance is encouraging, as it 
demonstrates the model's resilience and effectiveness in maintaining high standards of task 
proficiency even after undergoing specific modifications. 

Deployment  
The conference assistant provides a REST API, developed using FastAPI, interface for 
interacting with a conference-related virtual assistant. This assistant is designed to handle 
user queries related to conference navigation, program information, and general inquiries. The 
API is structured around two main endpoints, each catering to different aspects of the 
assistant's functionalities. The detailed explanation of the API is presented in Appendix III. 
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The first endpoint is the intent destination endpoint (Figure 3.25), which processes user 
queries to determine the user's intent and the corresponding destination within the conference 
context. This function takes a string input representing the user query and returns a response 
identifying the intent and destination. 
 

 
Figure 3.25. The intend and destination recognition endpoint 

 
The second and the last endpoint is the response generation, which caters to generating 
responses based on user queries, and additional Mozilla inputs. It offers personalized 
assistance depending on whether the query is related to navigation, program information, or 
general conference queries. The Figure 3.26 demonstrates the graphical representation of the 
response generation endpoint in the FastAPI framework. 
 

 
Figure 3.26. The response generation endpoint 

 

Next Steps  
As the next step, enhancing the conference agent workflow will involve expanding its 
capabilities to include providing insights about the trade show and offering spatial information 
to users. This enhancement is aimed at delivering a more comprehensive and user-friendly 
experience. Integrating the model with extensive details about the trade show, such as 
exhibitor lists, product details, event schedules, and special highlights, will guide the user 
through the trade show experience. This feature will be particularly beneficial for attendees 
seeking to maximize their time at the event. Additionally, incorporating spatial information is 
crucial for a more intuitive user experience. This will be performed with the integration with the 
visual language model. By leveraging this model, the agent can interpret and describe the 
spatial layout and visual aspects of the conference environment. Users will benefit from 
detailed visual descriptions, and insights about the spatial arrangement. To further enhance 
user satisfaction, improving the inference time of the model is also a priority.  
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3.4.2. AR Training Assistant 
We first introduce the autonomous training agent architecture powered by large language 
models (LLMs) [Wang et al., 2023], aiming at a solution for training assistants in an Augmented 
Reality (AR) environment. The core idea is to adopt a new workflow (Figure 3.27) powered by 
LLMs and driven by four functional submodules: memory, tools, planning, and actions. 
Specifically, a LLM, the brain of the dialogue agent, can plan the next action based on memory 
such as historical conversations (short-term) and knowledge base (long-term memory) and 
reaction of the executable tools that links to use case. To implement this architecture, we 
adopt LangChain10, the flexible abstractions and extensive toolkit for LLM applications. 
 

 
Figure 3.27. Autonomous agent powered by large language models 

 

Workflow and Motivation 
In this work, we aim to introduce a workflow (Figure 3.28): we use large language models 
(LLMs) as a human-like "brain" to augment XR systems with Artificial Intelligence; and vice 
versa, we enable XR systems to provide services by external API tools to augment general 
LLMs specifically for the AR Training Assistant (ARTA) use case, so that the AR system can 
better plan which tool to use and when to use it based on fully understanding the users' need. 
  
The core idea of this workflow is the autonomous Dialogue Agent (DA), which can 1) utilize a 
language model such as Llama2 to conduct planning of a sequence of actions to take, 2) 
invoke a set of useful tools of real-world XR applications and observe the execution results 
and 3) make the decision of the next action based on all observations in the memory (e.g., 
historical utterances, response from XR environment, knowledge base, database, etc).  
 
Particularly, the revolution of the autonomous agent powered by LLMs brings two benefits:  

• Unlike general chains, where a sequence of actions is hardcoded (e.g., traditional 
dialogue pipeline with NLU followed NLG), the autonomous agents are powered by a 
language model and a prompt, which can serve as a reasoning engine to determine 
which actions to take and in which order automatically.  

• The real-world applications can be learned to use automatically through reasoning, 
reducing the human’s efforts on guidelines or defining training needs. 

 
10 https://python.langchain.com/docs/get_started/introduction 
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Figure 3.28. The workflow of ARTA 

 
In this workflow, there are three key phrases to develop the model: 
 
Phase 1: Develop the workflow and test the existing LLMs such as "gpt-3.5-turbo-16k-0613"11. 
It aims to investigate if this workflow based on the dialogue agent can integrate and 
immersivity interact with a XR application seamlessly. 
 
Phase 2: Create domain-specific datasets for the use case. We created datasets by two ways: 
(1) we reconstruct a TEACH-EDH dataset from human Commander-Follower conversations 
for household tasks in the VR simulation environment; (2) We generate and collect a VOX-
ARTA dataset for LEGO brick assembly tasks in the XR simulation environment, using the 
workflow with a GPT3.5 and multimodal LEGO manuals.  
 
Phase 3: Finetuning open-resourced LLMs such as “Llama2-chat-7b”12 with context-response 
pairs obtained from various datasets for teaching conversations (i.e., the reconstructed 
TEACH-EDH13 dataset), tool-calling and multimodal conversations (i.e., VOX-ARTA-LEGO 
dataset14). 

Model description 
Following the workflow, we develop the model in terms of three aspects: 1) conversational 
agent walkthrough for planning and prompt engineering by fine-grained instructions 2) XR 
Application tools’ API integration and 3) core LLM upgrade by finetuning the prevailing open-
resourced LLM on use-case specific datasets. 
 
Conversation agent walkthrough 
We adopt a conversation agent walkthrough that optimizes the standard ReAct [Yao et al., 
2023] with prompt engineering for conversation. This walkthrough demonstrates how to use 
an agent plan for conversation. LM can obtain a set of observations from the environment and 
decide the next action by reasoning the trace. The observations are a chain of information 
from diverse sources, e.g., historical conversations and prompts, XR tool responses, etc. The 

 
11 https://platform.openai.com/docs/models/gpt-3-5 
12 https://huggingface.co/meta-llama/Llama-2-7b-chat 
13 https://huggingface.co/datasets/Jiahuan/teach_edh 
14 https://huggingface.co/datasets/Jiahuan/vox_arta_lego 
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final response is decided by observing the action of XR tools. Following is an example of one-
loop chain-of-thought in the walkthrough:  
Human: Can you show the detail of the roof? 
AI: Action: ShowPieces 
     Action Input: roof 
     Response: Pieces available for roof: 2 x 2 red, 2 x 2 blue, 1 x 2 black, 1 x 2 white.                                             
                       Please select which piece you want to use. 

 
In contrast to many other agent walkthroughs that primarily focus on optimizing tool usage for 
determining the best response, our approach diverges, recognizing the importance of fostering 
conversational capabilities. This distinction becomes evident when comparing it to the 
conventional ReAct (Reason and Act) walkthrough, with the key disparity lying in the nature 
of the prompt. Our emphasis is on cultivating a much more conversational prompt to enhance 
the agent's ability to engage in meaningful dialogue with users. Specifically, we integrate task-
specific prompt and XR tool responses in the observations so as to enable the agent to 
consider these in the reasoning traces for the decision of a next action. The walkthrough 
procedure is illustrated in Figure 3.29. 

 
Figure 3.29. The illustration of conversational ReAct walkthrough 

 
XR Application tools’ API integration 
We develop an XR test application and integrate the information interaction flow (Figure 3.30) 
between the application and the AI agent. This will be considered as a part of the whole 
workflow when the agent decides to call a specific tool for the user.  

  
Figure 3.30. Interactive information flow between XR test application and AI agent 
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We develop a collection of executable interactive functions, presented in Table 3.20 within the 
XR test application, serving as external tools available for the agent. These tools play a crucial 
role in enabling agents to engage with the XR world and systematically navigate the XR 
environment. To facilitate the utilization of these functionalities, we have developed a toolkit—
a set of API calls. This toolkit allows LLMs to access and invoke the services or functions 
outlined in the accompanying table, empowering them to strategize and determine the optimal   
for utilization within the XR system with minimum latency. 
 

Table 3.20. Descriptions of the functions for the XR tools in the test application 

 
 
Parameter-Efficient Fine-Tuning of Quantized LLMs 
Fully finetuning an LLM requires powerful computation resources as a result of the recent 
growth of LLM sizes. For example, the smallest version of Llama2 contains 7 billion learnable 
parameters that require a GPU with ~28GB memory. To be able to utilize LLMs in the GPU 
we use to perform our developments (GeForce RTX 3090 with 24GB), we adopt 4-bit 
Quantized Low Raw Adaptor (QLoRA) [Dettmers et al, 2022] [Dettmers et al, 2023]. We use 
this approach for finetuning the quantization of Llama2-7b-chat and conduct parameter-
efficient fine-tuning (PEFT) of the quantized model with Low Raw Adaptor (LoRA). The 
comparison of the graphical representation of full fine-tuning, LoRA and QLoRA is presented 
in Figure 3.31. 

 
Figure 3.31. Comparison of full fine-tuning, LoRA, and QLoRA 
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Dataset Construction and Statistics 
In VOXReality, we produced two datasets that can be used for teaching assistant 
conversation agents, TEACH-EDH and VOX-ARTA-LEGO. 
 
TEACH-EDH 
We reconstruct the TEACH-EDH (Task-driven Embodied Agents that Chat - Execution from 
Dialog History) dataset by curating conversations between human Commanders and human 
Followers (Drivers) who collaboratively use natural language to accomplish household tasks 
within the AI2-THOR simulation environment [Kolve et al., 2017]. Each data sample consists 
of all historical utterances as an “input” and the current utterance as an “output”. We construct 
14,740 context-response pairs for TEACH-EDH dataset, including 9740 training, 1140 
validation and 3860 test data. We represent examples of the dataset in Figure 3.32. 
 

 
Figure 3.32. Examples of TEACH-EDH dataset 

 
VOX-ARTA-LEGO 
We generate and collect conversations between a user (trainee) and an AI teaching assistant 
(AI trainer) following the proposed workflow, which is powered by a commercially available 
LLM using GPT-3.5-turbo-16k-0613 and multimodal manuals for LEGO brick assembly. 
Specifically, we first performed web crawling in 65 multimodal manuals that are openly 
available on LEGO’s official website. Every manual consists of a summary and multiple 
assembly steps with both text instructions and images. This provides the fine-grained 
alignment between vision and language that are important to teach users how to assemble a 
LEGO brick set with a step-by-step guide. Then, we design prompts using the manuals and 
XR tools to generate textual simulated conversations. Similar to TEACH-EDH, each data 
sample consists of all historical utterances as an “input” and the current utterance as an 
“output”. We construct 866 context-response pairs for VOX-ARTA-LEGO dataset, including 
622 training, 70 validation and 174 test data samples. We present examples of the dataset in 
Figure 3.33. 
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Figure 3.33. Examples of VOX-ARTA-LEGO dataset 

 
Analysis of the datasets 
We conduct a comparative analysis of the statistics, as presented in Table 3.21, and delve 
into the specifics of the two proposed datasets. Regarding the statistical aspects, the TEACH-
EDH dataset boasts a larger number of data samples, featuring a higher count of dialogues 
and utterances. Conversely, the VOX-ARTA-LEGO dataset exhibits longer utterances from 
both users and systems. From a linguistic point of view, the utterances within the VOX-ARTA-
LEGO dataset resemble a more human-like language, characterised by rich and diverse 
descriptions. On the other hand, the TEACH-EDH dataset leans more towards a machine-like 
language expression.  
 

Table 3.21. Statistics of TEACH-EDH and VOX-ARTA-LEGO datasets 
Phase TEACH-EDH VOX-ARTA-LEGO 

Before 98 98.1 
Context-Response 14,740 866 
Dialogue 3320 171 
Utterance 45,000 1,670 
Avg Context Length 49.81 1,302 
Avg Response Length 10.90 184 
Avg Utterance Per Dialogue 13.67 9.77 
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Experimental Setup 
Task definition 
In the context of generative dialogue agents, the task is to generate responses to the user 
(trainee) given a sequence of diverse dialogue contexts, including historical utterances from 
trainer and trainee, multimodal manual, and XR metadata such as hand gesture input and 
head pose. In general, this task can be seen as a context-response generation task. 
 
Evaluation metrics 
We adopt the following metrics to evaluate models on both TEACH-EDH and VOX-ARTA-
LEGO datasets. 

• Perplexity is a commonly used measure of how well a language model predicts a 
sample. Lower perplexity indicates a better model, as it measures the average 
uncertainty of the model in predicting the next word in a sequence. 

• ROUGE (described in Section 2.5) is a set of metrics used for the automatic evaluation 
of generated response by comparing it to a set of reference responses.  

• METEOR (described in Section 2.5) incorporates various linguistic and semantic 
features to assess the quality of generated responses compared with reference 
responses. 
 

Implementation details 
The base LLM we use is the open-resourced Llama-2-7b-chat-hf15, which is a collection of 
pretrained and finetuned generative text models ranging in scale from 7 billion and up. We 
use 4-bit quantization of the model and conduct PEFT with LoRA to obtain finetuning of 4.43% 
of original trainable parameters. The batch size is 8 and the maximum step is 2,000 with early 
stopping when the validation loss does not decrease with continuous 10 steps. The maximum 
number of tokens is 512. 

Results 
We evaluate the Llama2 and its finetuned models on two proposed datasets and represent 
both quantitative results and qualitative analysis, respectively. 
 
Quantitative Results 
We present the evaluation results for the two proposed datasets both before and after 
finetuning with QLoRA, as outlined in Table 3.22. Perplexity, ROUGE, and METOR metrics 
were employed for assessment on the test set of both TEACH-EDH and VOX-ARTA-LEGO 
dataset. A significant reduction in perplexity is observed for both datasets, plummeting from 
42.18 to 3.08 for the TEACH-EDH dataset and from 8.81 to 1.06 for the VOX-ARTA-LEGO 
dataset. This indicates an enhanced model performance in predicting the next token with 
reduced uncertainty. Lower perplexity corresponds to a heightened proficiency in next token 
prediction. However, the ROUGE and METOR metrics show a decline on both datasets 
following QLoRA finetuning. Specifically, ROUGE experiences a 3.42% drop in TEACH-EDH 
dataset and 5.63% drop in VOX-ARTA-LEGO dataset, indicating a reduction in the overlap of 
1-gram tokens between generated and reference responses. METEOR exhibits a slight drop 
in both the TEACH-EDH dataset (2.01%) and the VOX-ARTA-LEGO dataset (1.09%), 

 
15 meta-llama/Llama-2-7b-chat-hf 
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suggesting a decline in linguistic and semantic similarity between generated and reference 
responses. This decrease can be attributed to two potential factors: firstly, QLoRA finetunes 
only 4.43% of the original trainable parameters, necessitating a substantial volume of data to 
effectively influence the limited parameter adjustments. Secondly, the quality of fine-grained, 
human-like data is crucial; otherwise, the introduction of new data may introduce noise to the 
original model . 
 

Table 3.22. Evaluation results on TEACH-EDH and VOX-ARTA-LEGO dataset 
Model TEACH-EDH VOX-ARTA-LEGO 

Perplexity ROUGE METEOR Perplexity ROUGE METEOR 
Llama2 42.18 8.17 12.08 8.81 23.36 12.42 
Llama2+QLoRA 3.08 4.74 10.07 1.06 17.73 11.37 

 
Qualitative Analysis  
We scrutinize the learning curves depicting the loss evolution for both training and validation 
datasets throughout the finetuning process, illustrated in Figure 3.34, where training loss is 
coloured blue and validation loss is coloured red. In the case of the TEACH-EDH dataset, the 
training loss decreases from 3.732 to 1.202, while the validation loss decreases from 3.742 to 
1.188. The model employs early stopping, interrupting the training at the 67th step in the 2nd 
epoch, as the validation loss shows no continuous improvement over 10 consecutive steps. 
In the case of the VOX-ARTA-LEGO dataset, the training loss exhibits a notable reduction, 
decreasing 2.116 to 0.177 while the validation loss decreases from 2. 176 to 0.060. The model 
adopts early stopping at 60th step in the 25th epoch. 
 

 
Figure 3.34. The learning curve of Llama-2-7b-chat-hf model finetuning on  

a) TEACH-EDH dataset and b) VOX-ARTA-LEGO 
 
Case Study 
We discuss the following showcases to analyse the responses generated by the model and 
provide an example of a walkthrough to illustrate how the reasoning of traces works with 
observations of actions. The following are two examples of the inference results from the test 
set, where the agent can observe actions, action inputs, and historical utterances from both 
human and assistant. In comparison with the reference responses, the model tends to 
generate longer responses with richer context and instructions. This motivates us to conduct 
a human evaluation to reconsider whether the decrease in ROUGE and METEOR scores is a 
fair metric for evaluating generation performance. 
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Observations #1 
Action: Guide 
Action Input: Yes 
Response: Sure thing! To find another transparent bright orange roof tile 1x2, 45°, I suggest 
checking the nearby shelves or drawers. Once you locate it, put it horizontally on the left 
knob, overhanging to the left and sloping to the left. Could you please let me know once this 
item is found? 
Human (Trainee): No, I followed the instructions and everything looks good so far. What's 
the next step? 
Assistant: Great! In that case, the next step is to attach the control levers to the sides of the 
vehicle. Can you please find two transparent bright orange roof tiles 1x2, 45°? Place them 
horizontally on the left and right knobs respectively, overhanging to the left and sloping to 
the left. Once you have located these tiles, please let me know so I can assist you further. 
 
Prediction #1 
Great! In that case, the next step is to attach the control levers to the sides of the vehicle. 
Can you please find two transparent bright orange roof tiles 1x2, 45°? Place them 
horizontally on the left and right knobs respectively, overhanging to the left and sloping to 
the left. Once you have located these tiles, please let me know so I can assist you further. 
 
Reference #1 
That completes this step! You've successfully built the control levers and added the plates. 
Is there anything you're unsure about or any questions you have? 
 
Observations #2 
Action: Guide 
Action Input: Yes 
Human: Can you find a bright red plate 1x2 with a single stud on top? 
Response: Of course! To find a bright red plate 1x2 with a single stud on top, I suggest 
checking the nearby shelves or drawers. Once located, please place it horizontally on the 
table. Could you please let me know once this item is found? 
 
Prediction #2 
Of course! To find a bright red plate 1x2 with a single stud on top, I suggest checking the 
nearby shelves or drawers. Once located, please place it horizontally on the table. Could 
you please let me know once this item is found? 
 
Reference #2 
Great! Let's proceed to the next step. 

 
The following is an example instance of an interactive conversation session with actual human 
input. The current agent demonstrates an ability to comprehend the logic behind tool 
invocation and provides sensible responses in alignment with the overall context of the 
conversation. 
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Human: Hi can you start assemble the LEGO car? 
Assistant: Sure thing! I'd love to help you with that. Which type of LEGO car would you like 
to build? We have different options available. Once you've made your choice, I can guide 
you through each step of the assembly process. Let me know what you prefer! 
 
Human: OK, got it. Can you go to next step? 
Assistant: Great! Let's proceed to the next step. Initiating the assembly process... 
Action: StartAssemble() 
Action Input: None 
Response: Assembly process started. Please follow the instructions carefully. 
Please provide the actual instruction manual text for the LEGO 11001 Classic set so I can 
generate the appropriate responses. 
 
Human: Can you go to step 3? 
Action: NextStep() 
Action Input: None 
Response: Moving to step 3... 
 
Human: Then what should I do next step? 
Action: NextStep() 
Action Input: None 
Response: Moving to step 4... 
 
Human: Can you tell me something not related to LEGO assembly task? 
Assistant: Sorry, I cannot fulfill that request. My primary function is to assist users with their 
LEGO assembly tasks. If you have any questions or requests related to the task, please 
feel free to ask. Otherwise, I'll be here to help whenever you need it. How may I assist you 
today? 
 
Human: Can you show the detail of the roof? 
Action: ShowPieces("roof") 
Action Input: None 
Response: Pieces available for roof: 2 x 2 red, 2 x 2 blue, 1 x 2 black, 1 x 2 white. Please 
select which piece you want to use. 

 

Deployment  
We deploy our model through the WebSocket API (an example run can be seen in Figure 
3.35), encapsulated within a Docker Image, to facilitate interactive communication between 
the user (trainee) and the assistant (AI trainer). We also prepared a deployment using FastAPI, 
a robust framework that enables seamless and efficient handling of the communication 
interface. The details can be found in Appendix IV. 
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Figure 3.35. Interactive WebSocket API 

 

Next Steps 
In the future work, we plan to extend the current VOX-ARTA-LEGO dataset to a larger version 
for finetuning and evaluation. The number of data samples is around 10 times of the current 
small version. Besides, we will consider integrating VOXReality vision-language models to 
enhance the vision-related observations in the conversational ReAct walkthrough in order to 
facilitate cases where such information would be useful. This enhanced pipeline will be made 
openly available for the third parties in the Open Calls. Furthermore, we plan to conduct human 
evaluation of the generated responses in order to further evaluate the responses generated 
in terms of natural language generation. 
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4. Conclusions 
 
The main objective of VOXReality WP3 is to implement natural language processing models 
that are context-aware, multilingual, visually grounded and knowledgeable of the domain 
specific needs of applications in XR environments. To this end, activities in WP3 invest in 
providing NLP models for automatic speech recognition, machine translation, vision language, 
and conversation agents. 
 
This deliverable presents the methodology and the results obtained from the experiments of 
VOXReality natural language processing models that are developed in the first 15 months of 
the project timeline. These models include the automatic speech recognition, context-aware 
machine translation, robust machine translation, simultaneous machine translation, image 
captioning, visual question answering, spatial scene description, VR conference conversation 
agent and AR training assistant tasks. This deliverable also describes the APIs developed for 
the inference capabilities of these models to be utilized in a plug and play approach. 
 
The initial results present that the VOXReality models achieve better or competitive results in 
their respective tasks compared to pre-trained models that do not involve the added values of 
the proposed models. The experiments prove that the natural language processing models 
developed in the project timeline until month 15 show promise and the further research that is 
planned to be conducted in the second phase of the WP3 tasks will evolve the models to be 
better suited to their respective tasks. The initial deployment tests that will be presented in a 
future deliverable (D4.1) also shows promising results of their applicability in XR applications.  
 
The consortium will focus on the deployment of the models in the VOXReality usecase 
applications in the coming months. The deployment results and optimization results for 
different deployment options will be presented in “D4.1.1 - Model Deployment analysis” on 
M17. Furthermore, the models and their performances will evolve throughout the project and 
additional models will be provided using the models produced from the research that will be 
performed in the second phase of the WP3 timeline. These changes, additions, and the final 
results will be presented in the second version of this document “D3.1.2 - Advanced AI multi-
model for XR analysis” on Month 30.  
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Appendix I: Endpoints for the ASR and NMT components 
 
1) Transcribe Audio: The method to transcribe given audio files. The source language is not 
required. 
URL: <api_url>/transcribe_audio_files 
Method: POST 
Request parameters:  

• audio_files [array]: the audio file to transcribe 
Response: 

• Success: Status Code: 200 Content: {"transcriptions": [String]} 
• Error: Status Code: 466 Content: {"message": "An error occurred in <error_location>. 

Details: <error_type>-<error_details>"} 
 
2) Translate Audio: The method to translate given audio files to the target language. The 
source language is not required. 
URL: <api_url>/translate_audio_files 
Method: POST 
Request parameters:  

• audio_files [array]: the audio file to translate 
• target_language [String]: “en”-English, “el”-Greek, “it”-Italian, “nl”-Dutch, “de”-German, 

“es”-Spanish  
• return_transcription [bool]: true/false 
Response: 

• Success: Status Code: 200 Content: {"transcriptions": [String], "translations": [String]} 
• Error: Status Code: 466 Content: {"message": "An error occurred in <error_location>. 

Details: <error_type>-<error_details>"} 
 
3) Translate Audio with Context: The method to translate given audio files to the target 
language using additional textual context for better translation of the transcribed text. The 
source language is not required. 
URL: <api_url>contextual_translate_audio_files 
Method: POST 
Request parameters:  

• audio_files [array]: the audio file to translate 
• context [String]: the textual context to use in the translation 
• target_language [String]: “en”-English, “el”-Greek, “it”-Italian, “nl”-Dutch, “de”-German, 

“es”-Spanish  
• return_transcription [bool]: true/false 
Response: 

• Success: Status Code: 200 Content: {"transcriptions": [String], "translations": [String]} 
• Error: Status Code: 466 Content: {"message": "An error occurred in <error_location>. 

Details: <error_type>-<error_details>"} 
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4) Translate Text: The method to translate given text to the target language. The source 
language is not required. 
URL: <api_url>/translate_text 
Method: POST 
Request parameters:  

• text [String]: the text to translate 
• target_language [String]: “en”-English, “el”-Greek, “it”-Italian, “nl”-Dutch, “de”-German, 

“es”-Spanish  
Response: 

• Success: Status Code: 200 Content: {"translations": [String]} 
• Error: Status Code: 466 Content: {"message": "An error occurred in <error_location>. 

Details: <error_type>-<error_details>"} 
 
5) Translate Text with Context: The method to translate given text to the target language 
using additional textual context for better translation. The source language is not required. 
URL: <api_url>/contextual_translate_text 
Method: POST 
Request parameters:  

• text [String]: the text to translate 
• context [String]: the textual context to use in the translation 
• target_language [String]: “en”-English, “el”-Greek, “it”-Italian, “nl”-Dutch, “de”-German, 

“es”-Spanish  
Response: 

• Success: Status Code: 200 Content: {"translations": [String]} 
• Error: Status Code: 466 Content: {"message": "An error occurred in <error_location>. 

Details: <error_type>-<error_details>"} 
 
6) Translate Text with Context and Terminology: The method to translate given text to the 
target language using additional textual context and terminological term pairs for better 
translation. The source language is not required. 
URL: <api_url>/contextual_terminology_translate_text 
Method: POST 
Request parameters:  

• text [String]: the text to translate 
• context [String]: the textual context to use in the translation 
• target_language [String]: “en”-English, “el”-Greek, “it”-Italian, “nl”-Dutch, “de”-German, 

“es”-Spanish  
Response: 

• Success: Status Code: 200 Content: {"translations": [String]} 
• Error: Status Code: 466 Content: {"message": "An error occurred in <error_location>. 

Details: <error_type>-<error_details>"} 
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7) Upload Terminology: The method to translate given text to the target language. The 
source language is not required. 
URL: <api_url>/upload_terminology 
Method: POST 
Request parameters:  

• file [String]: the file that contains terminological term pairs for different languages 
Response: 

• Success: Status Code: 200 Content: {"Successfully uploaded terminology file: 
<file_name>"} 

• Error: Status Code: 466 Content: {"message": "An error occurred in <error_location>. 
Details: <error_type>-<error_details>"} 
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Appendix II: Endpoints for the VL components 
 
1) Scenegraph Object Detection: The endpoint takes as input an image and returns a list 
with all the detected objects of the image. 
URL: <api_url>/scenegraph_list 
Method: POST  
Request parameters:   

• rgb [String]: an RGB input image in JPEG or PNG format 
Response:  

• Success: Status Code: 200 Content: {“Item list”: [String]} 
• Error: Status Code: 422 Content: {"message": "Input not supported for prediction”} 
 
2) Scenegraph Spatial Descriptions: The endpoint takes as input an image and returns a 
list with phrases describing the spatial relationships between all objects that were detected on 
the image. 
URL: <api_url>/scenegraph_rgb 
Method: POST 
Request parameters:   

• rgb [String]: an RGB input image in JPEG or PNG format 
Response:  

• Success: Status Code: 200 Content: {“Descriptions”: [String]} 
• Error: Status Code: 422 Content: {"message": "Input not supported for prediction”} 

 
3) Scenegraph Spatial Descriptions with Depth: The endpoint takes as input an RGB and 
a depth image and returns a list with phrases describing the spatial relationships between all 
objects that were detected on the image. 
URL: <api_url>/scenegraph_rgb_depth 
Method: POST 
Request parameters:   

• rgb [String]: an RGB input image in JPEG or PNG format 
• depth [String]: a depth input image in PNG format 
Response:  

• Success: Status Code: 200 Content: {“Descriptions”: [String]} 
• Error: Status Code: 422 Content: {"message": "Input not supported for prediction”} 
 
4) SOTA Image Captioning: The endpoint takes as input an RGB image and returns the 
description for this image. 
URL: <api_url>/cap_gpt2 
Method: POST 
Request parameters:   

• rgb [String]: an RGB input image in JPEG or PNG format 
Response:  
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• Success: Status Code: 200 Content: {“Image caption”: [String]} 
• Error: Status Code: 422 Content: {"message": "Input not supported for prediction”} 
 
5) SOTA Question Answering: The endpoint takes as input an RGB image and a question 
related to this image and returns the answer. 
URL: <api_url>/lxmert 
Method: POST 
Request parameters:   

• rgb [String]: an RGB input image in JPEG or PNG format 
• question [String]: a question related to the given image 
Response:  

• Success: Status Code: 200 Content: {“Prediction by LXMERT”: [String]} 
• Error: Status Code: 422 Content: {"message": "Input not supported for prediction”} 
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Appendix III: Endpoints for the navigation assistant 
 
1) Intent and Destination Detection: This endpoint processes a user query to identify the 
intent and the destination (topic or area of interest) within the context of the conference. 
URL: <api_url> /intent_dest/ 
Method: POST 
Request parameters:  

• user_query [String]: The user's query or question. 
Response: 
• Success: Status Code: 200 Content: {"intent": [String], "destination": [String]} 
• Error: Status Code: 400 Content: {“message”:  "Invalid request: 'user_query' is required."} 

 
2) Generate Response: This endpoint generates a response for the user's query using the 
provided user query and additional knowledge input (Mozilla input). 
URL: <api_url> /response/ 
Method: POST 
Request parameters: 
• user_query [String]: The user's query or question.  
• mozzila_input [String]: Additional knowledge or context to assist in generating the 

response. 
 

Response: 
• Success: Status Code: 200 Content: {“response”: [String]} 
• Error: Status Code: 400 Content: {“message”: "Invalid request format. Please check 

user_query, intent and mozilla_input fields."} 
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Appendix IV: Endpoints for the training assistant 
1) Textual Chat Agent: This endpoint generates a response for the user's query using the 
provided user query and XR test application functional tools. 
URL: <api_url> /ask/ 
Method: POST 
Request parameters: 
• query [String]: The user's query or question.  
Response: 
• Success: Status Code: 200 Content: {“response”: [String]} 
• Error: Status Code: 400 Content: {“message”: "Invalid request format."} 
 
2) Unity Chat Agent: This endpoint generates a response for the user's query using the 
provided user query and XR test application functional tools using requests coming from Unity 
URL: <api_url> /chatbot/ 
Method: Websocket 
Request parameters: 
• websocket [WebSocket]: The websocket from Unity with user's query or question as 

messages.  
Response: 
• Success: Status Code: 200 Content: {“response”: [String]} 
• Error: Status Code: 400 Content: {“message”: "Invalid request format."} 
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