

D2.3 DEVELOPMENT

INFRASTRUCTURE AND

INTEGRATION GUIDELINES

D2.3: Development Infrastructure and Integration

Guidelines
WP2
31-05-2023

31 MAY 2023 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION
GUIDELINES / 2

Dissemination Level

PU Public

PP Restricted to other programme participants (Including the Commission Services)

RE Restricted to a group specified by the consortium (Including the Commission Services)

CO Confidential, only for members of the consortium (Including the Commission Services)

Nature

PR Prototype

RE Report

SP Specification

TO Tool

OT Other

Version 1.0

WP WP2

Dissemination level Public

Deliverable lead SYN

Authors Stavroula Bourou, Drakoulis Petros, Konstantoudakis

Konstantinos, Mpiliousis Stefanos, Papadopoulos Georgios,

Zarpalas Dimitrios, Yusuf Can Semerci, Apostolos Maniatis

Reviewers Nikos Achilleopoulos; Manuel Toledo; Astik Samal, Spiros

Borotis, Olga Chatzifoti, Alberto Casanova, Nikolaos Skoulikas

Abstract This deliverable provides the reader an overview of VOXReality

components, how they interact with each other and the process

diagrams per use case. Moreover, it describes the integration

guidelines as well as the integration and validation methodology

that will be followed during the VOXReality project. Finally, the

deliverable contains the development infrastructure and the

integration tools that will be followed.

Keywords Integration, Interactions, Process Diagrams, Continuous

Integration, Continuous Delivery, Validation

License

This work is licensed under a Creative Commons Attribution-No

Derivatives 4.0 International License (CC BY-ND 4.0). See:

https://creativecommons.org/licenses/by-nd/4.0/

https://creativecommons.org/licenses/by-nd/4.0/

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 3

Version History

Version Date Owner Author(s)
Changes to previous
version

0.1 31-03-2023 SYN Stavroula Bourou ToC

0.2 05-05-2023 SYN Stavroula Bourou First inputs to the
deliverable

0.3 10-05-2023 CERTH,
UM,
SYN

Drakoulis Petros,
Konstantoudakis
Konstantinos,
Mpiliousis Stefanos,
Papadopoulos
Georgios, Zarpalas
Dimitrios, Yusuf
Can Semerci,
Apostolos Maniatis

Input to section 2.1

0.4 18-05-2023 SYN Stavroula Bourou Additional inputs to the
deliverable

0.5 22-05-2023 SYN Stavroula Bourou Peer-review version
ready and additional
updates

0.5.1 24-05-2023 MAG Astik Samal, Spiros

Borotis, Olga

Chatzifoti, Alberto

Casanova, Nikolaos

Skoulikas, Nikos

Achilleopoulos

Review and addition

0.5.2 29-05-2023 VRDAYS

MAG

 Manuel Toledo

Nikos

Achilleopoulos

Review

0.6 30-05-2023 SYN Stavroula Bourou Updates based on peer
review comments and
overall enhancements

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 4

Table of Contents

Version History.. 3

Table of Contents .. 4

List of Abbreviations & Acronyms .. 6

List of Figures ... 7

List of Tables .. 7

Executive Summary .. 8

1 Introduction .. 9

1.1 Intended Audience ... 10

1.2 Relations to other activities .. 10

1.3 Document Structure ... 10

2 VOXReality System Overview .. 10

2.1 VOXReality Components ... 11

2.1.1 Automatic Speech Recognition .. 11

2.1.2 Neural Machine Translation ... 12

2.1.3 Vision Language Models .. 13

2.1.4 Dialogue System .. 17

2.1.5 Component Interactions ... 18

2.2 Process Diagrams of VOXReality Use Cases .. 19

2.2.1 VR Conference .. 20

2.2.2 Augmented Theatres ... 23

2.2.3 Training Assistant .. 24

3 VOXReality Integration Guidelines ... 25

3.1 Modular Software Design .. 26

3.2 RESTful Architecture ... 26

3.3 Documentation .. 27

3.3.1 Source Code Documentation ... 27

3.3.2 API Documentation .. 28

3.4 Open Source ... 29

4 Integration and Validation Methodology ... 30

4.1 Roles and Responsibilities ... 30

4.2 Integration and Validation Cycle .. 30

4.3 Integration and Validation Phases and Time-plan .. 33

5 Development Infrastructure and Integration Tools .. 35

5.1 DevOps Approach ... 35

5.2 CI/CD .. 37

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 5

5.3 Source Code Management .. 39

5.4 Containers ... 39

5.5 VOXReality CI/CD Framework Instantiation ... 40

5.6 VOXReality Development Environment ... 43

6 Conclusion ... 44

7 References .. 45

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 6

List of Abbreviations & Acronyms

API : Application Programming Interface

ASR : Automatic Speech Recognition

CD : Continuous Deployment

CI : Continuous Integration

DevOps : Development, Operations

DS : Dialogue System

HTML : HyperText Markup Language

HTTP : HyperText Transfer Protocol

IoT : Internet of Things

JSON : JavaScript Object Notation

KPI : Key Performance Indicator

ML : Machine Learning

NDI : Several non-destructive inspection methods

NLG : Natural Language Generation

NLP : Natural Language Processing

NLU : Natural Language Understanding

NMT : Neural Machine Translation

OAS : OpenAPI Specification

OS : Operating System

PaaS : Platforms as a Service

POV : Point of view

REST : REpresentational State Transfer

SAST : Static Application Security Testing

SCM : Source Code Management

SDLC : Software Development Lifecycle

TDD : Test-Driven Development

VCM : Version Control System

VFX : Visual Effects

VL : Vision Language

VR : Virtual Reality

WP : Work Package

XML : Extensible Markup Language

XR : eXtended Reality

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 7

List of Figures

Figure 1: POST call providing the audio file to ASR. ... 12
Figure 2: Transcription of input audio file. .. 12
Figure 3: GET call providing the text file to Neural Machine Translation. 13
Figure 4: Translated output of Neural Machine Translation. .. 13
Figure 5: POST call providing the user’s image to Scene Captioning VL task. 14
Figure 6: Input image to Scene Captioning Vision Language VL task. 14
Figure 7: Output textual description of Scene Captioning VL task. 14
Figure 8: POST call providing the user’s image and the question to Visual Question

Answering VL task. ... 15
Figure 9: Input image to Visual Question Answering VL task. ... 15
Figure 10: Output answer to Visual Question Answering VL task based on question. 15
Figure 11: POST call providing the user’s image to Scene Spatial Description VL task. 16
Figure 12: Input image to Scene Spatial Description task of Vision Language Models 16
Figure 13: Output textual description to Scene Spatial Description task of Vision Language

Models .. 16
Figure 14: POST call providing the user’s request to Dialogue System. 17
Figure 15: Output response of Dialogue System. .. 18
Figure 16: Overview of data flow between VOXReality components. 19
Figure 17: Process diagram for user-to-user interaction in VR Conference use case 21
Figure 18: Process diagram for user-to-machine interaction in VR Conference use case ... 22
Figure 19: Process diagram of VOXReality components in augmented theatre use case. .. 24
Figure 20: Process diagram of VOXReality components in training assistant use case 25
Figure 21: Development and integration cycle .. 31
Figure 22: VOXReality’s phased approach .. 34
Figure 23: DevOps Lifecycle Stages ... 36
Figure 24: General CI/CD pipeline – Source: about.gitlab.com ... 37
Figure 25: VOXReality GitLab’s CI/CD pipeline steps - Source: docs.gitlab 38
Figure 26: VOXReality CI/CD pipeline ... 39
Figure 27: VOXReality GitLab Home page .. 41
Figure 28: VOXReality Vision and Language Models Subgroup. ... 41
Figure 29: VOXReality GitLab runners .. 42
Figure 30: VOXReality docker image repository. ... 42

List of Tables

Table 1: Input and output data format & operational language of VOXReality components. 19
Table 2: VOXReality components used in each use case. .. 20
Table 3: Development server characteristics. .. 43

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 8

Executive Summary

The purpose of this deliverable is to determine the integration and validation processes to be

followed in the VOXReality project as well as to provide the integration guidelines while

following the Continuous Integration and Continuous Delivery practice. In addition, a

description of the components that will be developed during the project is presented aiming to

highlight the main functionalities of VOXReality as well as the components’ interactions and

data formats. Process diagrams of the various tasks that will be carried out in pilots are also

included. Furthermore, the D2.3 analyzes the development infrastructure requirements that

will be needed to integrate and validate the VOXReality components.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 9

1 Introduction

Integration and validation procedures are of crucial significance for every system that intents

to be successful while efficiently fulfilling its purpose and role. A noteworthy solution that aims

to be realised in a system or a platform or even a service is materialized as the outcome of

proper integration and validation activities. Through these activities all the development

outcomes are fused together into a unified and effective system.

To successfully guide the process of integrating different software systems, components and

modules into a unified system is needed to set up the integration guidelines. Specifically, the

guidelines include all the needed principles, best practices, and standards to help developers

to design and implement an integrated system that is scalable and easy to maintain. The

integration guidelines can bring several benefits to the project including improved code quality,

reduced costs and time as well as better consistency.

The integration guidelines contain information and advice on the following topics:

• System architecture, providing an overview of the structure, behavior, and

functionality. The goal of system architecture is to ensure that the system is well-

designed, efficient, and scalable, and that it meets the needs of its users.

• Data formats and protocols, defining the practices for exchanging data between

different components, including the usage of standard data formats and

communication protocols. Based on this, developers can ensure that their systems

can exchange data with other systems seamlessly and reliably.

• Testing and validation, determining the procedures to efficiently test and validate the

integrated system. Those procedures may include unit, integration and performance

testing and ensure that the software system or application is functioning correctly,

efficiently, and reliably.

The aim of VOXReality is to generate a set of pre-trained models that combine language and

AI vision, as well as a set of applications using those models to demonstrate innovation in

various sectors. Together with those models the VOXReality consortium will provide the

means and methods to use those AI models, such as inference codes, etc., as well as the AI

tools to perform “once-for-all” training, finetune and optimize those AI models on different

applications by stakeholders and third parties’ users.

This deliverable describes the integration guidelines that should be followed by the

VOXReality AI engineers and developers to ensure that the developed system behaves

correctly and efficiently. Initially a description of VOXReality components is given,

accompanied with information regarding the interaction of those components, including the

data format. Additionally, the processes that would be followed with use cases are provided

via process diagrams. Originate from those architectures, the scope of the project and the

desired outcomes as well as an efficient integration and validation strategy is defined for

VOXReality project. Additionally, the integration guidelines as well as tools and frameworks

for integration and testing activities, within the project’s CI/CD lifecycle, are introduced in this

document. In the end, the development infrastructure that is utilized in the VOXReality project

is presented. It should be mentioned that the integration methodology that is presented in this

deliverable is closely connected with the work is conducted in task 4.1 “Model deployment and

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 10

serving”, which its output and results will be presented in D4.1 “Model deployment analysis

V1” in M17 and in the D4.2 “Model deployment analysis V2” in M32.

1.1 Intended Audience

The intended audience of this deliverable is mainly the consortium of the VOXReality project.

In detail, this document provides the VOXReality architectures per use case and introduces

to the technical partners of the consortium, the integration and validation environment of the

VOXReality system as well as the corresponding guidelines that need to be followed through

the development, integration and validation lifecycle of the project. Additionally, this document

is useful for third parties’ users, including those who will be participating at project’s Open

Calls as well as researchers who want to explore the VOXReality capabilities by utilizing its AI

models and developed outcomes.

1.2 Relations to other activities

As already stated, integration and validation activities act as the foundation of the system

development process. Consequently, this document is strongly connected with all the

technical WPs (3-4). Moreover, it is also related to WP5 that consists of the validation work,

dictated by the VOXReality Pilots cases. Finally, it is also related with WP6 and WP7 in the

context of impact creation and Open Calls, respectively.

1.3 Document Structure

The present deliverable introduces the VOXReality process diagrams per use case and

presents the principals on the Integration guidelines, the integration and validation plan, the

frameworks and tools that will be used and finally introduces the development infrastructure.

Section 1 provides an introduction of the deliverable’s intended audience as well as an

overview of its content. Section 2 presents the VOXReality system, through the analysis of

components and their interactions. Additionally, it presents some the process diagrams of

each use case that describe the flow of the information between the VOXReality platform

components. Section 3 provides the integration guidelines aimed at establishing common

development procedures that will significantly facilitate and accelerate the interaction between

development teams, as well as the integration of diverse software pieces into a common

VOXReality framework. Moreover, it contains information regarding modular software design,

RESTful architecture, source code and API documentation. Section 4 presents information

regarding VOXReality integration plan. Specifically, it details the integration and validation

methodology that will be used as well as the respective phases and integration time-plan.

Section 5 presents VOXReality integration framework and tools. Particularly it describes the

DevOps practices that will drive the development and integration activities of the project and

on the relevant CI/CD pipeline. Moreover, source code management procedures and the

containerization concept as well as the VOXReality development environment are introduced.

Section 6 summarizes the conclusions that are deduced from the current document.

2 VOXReality System Overview

VOXReality integrates language- and vision-based AI models, aiming to tackle the challenges

associated with human-to-human and human-to-machine interaction in XR space. To achieve

this, VOXReality utilizes NLP and CV advancements to create robust AI models. The multi-

modal information is exchanged between the modalities with unidirectional or bidirectional

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 11

ways to drive AR and VR, enabling natural human interactions with the backends of XR

systems and creating multi-modal XR experiences from the combination of vision and sound

information.

Particularly, powerful multi-tasking NLP models that are adjustable to different languages and

expressions while they can consider the surrounding context, are implemented. Additionally,

based on language and visual information, visually grounded language models are built

providing valuable information about the surrounding. Finally, by utilizing the outputs of the

aforementioned AI models and additional knowledge, a context-aware dialogue system is

developed, which creates well-grounded conversations, provides navigation guidelines and

assistance to the user via XR. Specifically, four main components are implemented in

VOXReality: Automatic Speech Recognition (ASR), including the Error Correction component,

Neural Machine Translation (NMT), Vision language Models (VL) and Dialogue System (DS).

The developed AI models will be used to create immersive XR experience. Specifically, those

models will be deployed and validated in three use cases: VR Conference, Augmented

Theatre and Training Assistant, which have been described in D2.1 “Definition and Analysis

of VOXReality Use Cases V1” [1].

This section contains a brief description of VOXReality AI components that are developed in

the project. Additionally, information about how these components interact with each other is

provided, focusing on input and output data format and language. Finally, process diagrams

and analysis of each use case are presented.

2.1 VOXReality Components

In this subsection, the main AI components of VOXReality are analyzed as well as information

about their interaction.

2.1.1 Automatic Speech Recognition

The role of the Automatic Speech Recognition (ASR) component is to generate transcriptions

of user speech. It operates by taking audio files in the ".wav" format and producing

transcriptions in the language spoken by the individuals. This component incorporates an

advanced deep learning model that has been trained using the VOXReality languages, namely

English, German, Greek, Dutch, Spanish, and Italian. It is packaged within a docker container,

equipped with RESTful API capabilities.

To access the ASR functionality, the API requires a POST request containing the audio file in

".wav" format as it is depicted in Figure 1. The source language is automatically detected, but

the request can also specify the source language. Figure 2 shows the resulting transcription

text is provided in the JSON format.

Additionally, the ASR component considers the visual context provided in English text from

the Visual-Language models (Section 2.1.4) to enhance the accuracy of the transcription.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 12

Figure 1: POST call providing the audio file to ASR.

Figure 2: Transcription of input audio file.

2.1.1.1 Error Correction

The Error Correction component is responsible for improving the grammatical and syntactical

accuracy of the transcriptions generated by the ASR component. It takes text-based

sentences as input and produces corrected text in the language spoken by the users. Similar

to the ASR component, it utilizes a cutting-edge deep learning model trained with the

VOXReality languages and is included in the ASR docker bundle.

The Error Correction process occurs automatically after the ASR component generates the

initial transcription from the input audio. The ASR component's response in the JSON format

is the corrected version of the original transcription.

2.1.2 Neural Machine Translation

The Neural Machine Translation (NMT) component handles the translation of text from one

VOXReality language to another. It utilizes a state-of-the-art deep learning model trained with

the VOXReality languages and is bundled into a docker container with RESTful API

capabilities.

To utilize the NMT component, the API is accessed via a GET request containing the text

sentences in the desired language and specifying the target language for translation, as it is

visualized in Figure 3. The source language is automatically determined, but it can also be

explicitly provided in the request. The translated text is provided in the JSON format, aligned

with the target language specified in the request. Figure 4 depicts the translated output.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 13

Similar to the ASR component, the NMT component leverages the visual context provided by

English text from the Visual-Language models (Section 2.1.4) to enhance the translation

process.

Figure 3: GET call providing the text file to Neural Machine Translation.

Figure 4: Translated output of Neural Machine Translation.

2.1.3 Vision Language Models

The Vision Language (VL) models to be developed will be bundled as docker containers,

instantiated on-demand on CUDA compliant infrastructure of sufficient capacity. Their

functionality will be accessible via REST API calls to distinct, task-specific, network endpoints.

The envisioned VL tasks are the three following: 1) Scene Captioning 2) Visual Question

Answering 3) Scene Spatial Description. The output of these models forms the “visual context”

of the VOXReality pipeline to be used by various other components.

1) Scene Captioning: It refers to the task of generating the textual description or captions

of a visual scene or image. The caller makes a POST call providing an image from the

user’s point of view to be captioned. Figure 5 shows POST call, while the Figure 6

presents the input image. The system returns a JSON with the answer in it as it is

visualized in Figure 7. A visual example of this interaction follows:

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 14

Figure 5: POST call providing the user’s image to Scene Captioning VL task.

Figure 6: Input image to Scene Captioning Vision Language VL task.

Figure 7: Output textual description of Scene Captioning VL task.

2) Visual Question Answering: This task attempts to correctly answer questions in natural

language regarding visual content. The caller makes a POST call providing both an

image from the user’s point of view and a question to be answered based on the

content of this image. The POST call with the requested question based on a specific

image is depicted in Figure 8 while the image is demonstrated at Figure 9. The system

returns a JSON with the answer in it as it is shown in Figure 10. A visual example of

this interaction follows:

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 15

Figure 8: POST call providing the user’s image and the question to Visual Question Answering

VL task.

Figure 9: Input image to Visual Question Answering VL task.

Figure 10: Output answer to Visual Question Answering VL task based on question.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 16

3) Scene Spatial Description: This task refers to the process of understanding and

describing the spatial relationships between objects of visual scene. The caller makes

a POST call providing an image from the user’s point of view to be captioned as it is

visualized in Figure 11. The input image is shown in Figure 12. The model identifies

the visible objects and provides a number of sentences describing their spatial

relationships as it is presented in Figure 13. A visual example of this interaction follows:

Figure 11: POST call providing the user’s image to Scene Spatial Description VL task.

Figure 12: Input image to Scene Spatial Description task of Vision Language Models

Figure 13: Output textual description to Scene Spatial Description task of Vision Language

Models

Note that, in later stages of the project, video may be introduced as an input option as well.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 17

2.1.4 Dialogue System

The dialogue system model is a task-oriented system that is designed to generate human-like

responses based on the user's input and the surrounding. By taking text inputs from multiple

sources, the system will be capable of providing context-aware conversations, navigation

instructions, information about the surrounding space and assembly instructions to the user.

Additionally, the system will remember the conversation history, allowing it to provide relevant

responses.

The dialogue system will be able to understand the input text using advanced Natural

Language Understanding (NLU) model. Moreover, the system can manage the dialogue

between the user and the system, keeping track of the history, the context as well as the state

of conversation. The appropriate response to user’s input is defined based on the current state

of the dialogue. Finally, the natural-like response to the user is generated using robust Natural

Language Generation (NLG) model.

The automatic speech recognition (ASR) component will transcribe the user's speech into text,

which the dialogue system is going to use to understand the user's intent. Also, the dialogue

system could be connected to a knowledge base that provides external information. In addition

to speech recognition, the dialogue system is going to also utilize text input from vision

language models. These models provide descriptions of the environment, including

information about the surrounding space and objects. By processing this information, the

dialogue system could be capable of answering questions about the environment.

The dialogue system is built using state-of-the-art models that have been trained on publicly

available datasets, enabling users to make reservations in multiple domains such as

restaurants and hotels. The API system is built within a Docker container, allowing for easy

deployment and scalability. The API is accessed through a POST request, with the user

providing input in text format using the English language and the response from the dialogue

system is returned in JSON format. Figure 14 depicts the POST call, containing the user’s

request, while the Figure 15 presents the response of the dialogue system.

Figure 14: POST call providing the user’s request to Dialogue System.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 18

Figure 15: Output response of Dialogue System.

Overall, the dialogue system is a key component of the VOXReality project, providing users

with context-aware conversations, navigation, and assembly instructions. By combining inputs

from speech and vision-based models, the system is able to understand the user's intent and

provide relevant information about the environment. This makes the system a powerful tool

for assisting users in a variety of tasks, from navigation to information retrieval.

2.1.5 Component Interactions

The VOXReality system consists of the components described in subsections 2.1.1 - 2.1.4

and accepts as input both audio, specifically speech, and visual data, which can be presented

either on the scene or the user’s point of view (POV). The developed components interact with

each other since the output of one component can be used as the input of another. It should

be mentioned that the ASR, Error Correction and Neural Machine Translation can operate to

any language between English, German, Greek, Dutch, Spanish and Italian, which are those

languages that VOXReality focuses on, while Vision Language models and Dialogue System

are functional for English.

An overview of the data flow between the different components is presented in Figure 16.

Audio data is processed by ASR to generate transcriptions in the form of text. The audio data

can be in any language between English, German, Greek, Dutch, Spanish and Italian. The

transcription is in the same language as the audio data. Additionally, the ASR accepts as input

the visual context produced by Vision Language Models to enhance the transcriptions. The

Error Correction component is part of ASR, which accepts as input the transcription from ASR

and provides an error-free text.

The Visual Language models receive as input the user’s point of view or the scene, being real

or synthetic, process it and produce the “visual context” in the form of text data, which can be

used by the ASR, Neural Machine Translation and Dialogue system to enhance their operation

and assist them to generate a context-aware output.

Afterwards, the transcriptions are passed to Neural Machine Translation module, which

translates it to the language of interest among the five languages that VOXReality focuses on.

Additionally, the visual context produced by Vision Language Models can be utilized by this

component to enhance the accuracy of translated text. If the user’s language is English and

his/her intent is to interact with the Dialogue System, then the transcription is not processed

by the NMT.

The Dialogue System accepts as input the English translated text from Neural Machine

Translation as well as the visual context and produces an English response. If the user’s

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 19

language is English, then this response is provided directly to him/her. Otherwise, it is

processed through Neural Machine Translation to be translated to user’s language.

Figure 16: Overview of data flow between VOXReality components.

The various VOXReality components need to effectively communicate and exchange data to

be integrated in a unified solution. Therefore, it is important to clearly define the input and

output data format of each component. Moreover, it is crucial to determine the language/s that

each component can operate with. The Table 1 summarizes this information.

Table 1: Input and output data format & operational language of VOXReality components.

Component
Input Output

Data Language Format Data Language Format

ASR

Audio User’s wav

Text User’s JSON Text (visual
context)

English JSON

Error Correction Text User’s JSON Text User’s JSON

Neural Machine
Translation

Text User’s JSON

Text
Other user’s or
English

JSON Text (visual
context)

English JSON

Vision Language
Model

Image N/A jpg, png
Text (visual
context)

English JSON
Text English

REST
POST

Dialogue System

Text English JSON

Text English JSON Text (visual
context)

English JSON

2.2 Process Diagrams of VOXReality Use Cases

Τhis section provides the process diagrams of VOXReality use cases, highlighting the

interactions among components. Table 2 presents for each use case the used VOXReality

components. It is observed that at least two of the VOXReality components are utilized in

every case, while the VR Conference contains all the components.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 20

Table 2: VOXReality components used in each use case.

Use case
Components

ASR
Neural Machine

Translation
Vision language

Models
Dialogue
System

VR Conference X X X X

Augmented Theatres X X X

Training Assistant X X

2.2.1 VR Conference

The specific use case has as goal to provide language translation at a virtual conference and

user navigation, that will be held in VR space. The language translation part of this use case

can be characterized as user-to-user interaction since each user should be able to

communicate with other users, that speak different language. The navigation experience can

be identified as user-to-machine interaction since users will have the opportunity to assist the

virtual agent in order to gain valuable information about the venue in VR space as well as the

program of the conference events. For this reason, but also for better understanding of this

use case, two process diagrams are presented, one for user-to-user and one for user-to-

machine interaction.

User-to-user Interaction

The purpose of this case is to facilitate the communication between users who speak different

languages, for instance user 1 speaks language 1 while user 2 speaks language 2. Users’

language is any of the VOXReality operational language. Inputs are the user’s speech and

POV. Figure 17 shows the operations for processing the one user’s input data and generate

the translated output that is provided to another user.

Specifically, user 1 enters VR application via either computer or glasses. Audio data, which is

the user’s 1 speech, is processed by ASR module which produces the transcriptions.

Additionally, the Error Correction component can produce an error-free version of those

transcriptions. Then, the Neural Machine Translation accepts the (error-free) transcriptions

and provides the translated version of the user’s 1 speech. It should be mentioned that the

Visual Language Models will provide visual context to ASR and Neural Machine Translation

to enhance the accuracy of their performance. The translated output data is passed to VR

application and the graphic overlays are created, which are demonstrated to user 2 via VR

glasses of computer.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 21

Figure 17: Process diagram for user-to-user interaction in VR Conference use case

User-to-machine Interaction

Regarding the user-to-machine interaction part of VR conference, the user requires to

communicate with the system to derive useful knowledge about the VR venue and the program

of events. Specifically, the user can ask the system about navigation instructions, programme-

related details and questions about the surrounding place. Inputs in this case are user’s

speech and POV as well as the structural scene information derived from VR application.

Figure 18 demonstrates the workflow of the components to build a successful user-to-machine

interaction in VR conference use case.

The user enters the VR application and starts to communicate with the system. The user’s

POV is utilized by Vision Language Models that can provide visual context to ASR, Neural

Machine Translation and Dialogue System. The user’s speech, i.e., audio data, are processed

by ASR and Error Correction modules to produce error-free transcriptions in the form of text.

Afterwards, this information is passed to Neural Machine Translation component. If the user’s

language is English, then the Neural Machine Translation sent the text directly to Dialogue

System. Otherwise, the transcriptions are converted to English by the Neural Machine

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 22

Translation component. The translated text is transmitted to Dialogue System which is able to

assist the user with useful responses. Moreover, in the case that the user wants to be informed

about its surrounding place by asking questions, the Vision Language models provides the

relevant information to Dialogue system to accomplish the Question Answering task.

The Dialogue System will utilize the English transcription, the visual context, the structural

scene information and predefined, external context to provide usefull explanations to the user.

The predefined, external context, could be any materials which would provide specific

responses the user, such as the programme, the venue map, etc. The output of Dialogue

System is English textual response. If the user’s language is not English, then the response

will be translated to user’s language.

At the end, the VR application will produce the graphic overlays which will be visualized by the

VR glasses or computer to user. Those graphic overlays would contain the textual response

of the system, visual cues and other interactive features that can help the user to better

understand the response.

Figure 18: Process diagram for user-to-machine interaction in VR Conference use case

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 23

2.2.2 Augmented Theatres

In this use case, the VOXReality system will be used to enhance a theatrical play. This will be

achieved by providing language translation and VFX experience to the user with AR glasses

during the play. The inputs are both image recordings of the theater stage and audio

recordings of each actor’s and narrator’s speech. Figure 19 presents the basic operations for

processing audio and visual information by VOXReality components to generate immersive

theatrical experiences.

The theater stage is continually captured by a fixed camera whose positioning will serve to

provide unobstructed view to the scene extents. The scene view is processed by the Vision

Language component which periodically provides descriptions of the scene, both semantic

and spatial. The semantic information provided by the VL will be used to serve two needs. The

first are accessibility needs through a feature, termed scene description, which generates

automated textual descriptions of events happening in the scene. The second are theatrical

literature needs through a feature, termed contextual information provision, which generates

on demand background information about objects currently on stage. The background

information for each object will be determined by the theatrical director. Finally, the spatial

information can be used provisionally for the 3D placement of virtual object overlays, termed

VFX.

Additionally, audio data, which is the actor’s speech, is constantly recorded by each actor’s

fixed microphones. This data is processed by the ASR component, which generates the

transcriptions. Moreover, the Error Correction component can produce an error-free version

of those transcriptions. Afterwards, the Neural Machine Translation receives the (error-free)

transcriptions and provides translated captions of an actor’s speech. It should be mentioned

that the Visual Language Models will provide visual context to ASR and Neural Machine

Translation to enhance the accuracy of their performance.

The AR application receives input from the NMT and the VL and it is responsible to visualize

both the VFX and captions to the user through AR glasses. The VFX will be triggered by a set

of chosen keywords which will be scanned for in the transcript either as provided by the NMT

(user preferred language) or the ASR (original language) and the scene description provided

by the VL, and will be positioned based on predetermined positions and additional input from

the VL. The VFX content and the exact conditions of their appearance and timing will be

predetermined in conjunction with the theatrical partner.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 24

Figure 19: Process diagram of VOXReality components in augmented theatre use case.

2.2.3 Training Assistant

The purpose of this use case is to perform industrial machine assembly training using AR

glasses. Specifically, users will assemble a virtual machine with virtual tools and objects in an

Augmented Reality environment. Inputs in this use case will be user’s audio data. Figure 20

describes the VOXReality operations for assisting a user in this specific task. The operational

language of this use case is English.

The user’s speech, i.e., audio data, are processed by ASR and Error Correction modules to

produce error-free transcriptions in the form of text. Afterwards, the corrected text is

transmitted to the Dialogue System which is able to assist the user with useful responses.

The Dialogue System will utilize the English transcription and the predefined external context

to provide useful explanations to the user. The predefined, external, context could be any

supporting materials which would provide specific responses about that use case to the user,

such as instruction manuals, description of steps, etc. The output of Dialogue System will be

English textual responses that can be used to assist the user to perform a specific task.

Eventually, the AR application will generate the graphic overlays which will be visualized via

the AR glasses to user. Those graphic overlays would include the textual response, visual

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 25

cues, and other interactive features to help trainees identify the correct tools and parts,

navigate the assembly process, and troubleshoot any issues or errors that may arise.

Figure 20: Process diagram of VOXReality components in training assistant use case

3 VOXReality Integration Guidelines

Common procedures that are applied during development may essentially enhance and

accelerate the interaction and cooperation between development teams, as well as the

integration of diverse software modules into a unified VOXReality system. The following

subsections specify a set of suggested guidelines to be followed by VOXReality developers

and, therefore, reinforce their interaction and communication.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 26

3.1 Modular Software Design

Modular design and programming in software development focus attention on decomposing

a program’s functions into separate pieces or building blocks, each comprising all piece of

code needed to implement a single attribute of the desired functionality [2]. Subsequently,

integrating different software components together, the implementation formulates the

system’s complete range of capabilities.

Modular design is suitable for handling complexity and dependencies while dealing with

remote working teams. The main concept of modular design refers to breaking down large

and complex systems into simpler, smaller and more workable components. Modules present

the appropriate methodology for abstracting arbitrary complexity, behind simple and

straightforward interfaces. In this manner, functionality can be achieved incrementally, as the

project advances.

In this respect, VOXReality will follow a modular design approach based on the following

concepts:

• Well-defined scope: Each module must be well-defined and have a single, exclusive

functionality. The implemented functionality should be as accurate and focused as

possible, in order to avoid potential overlapping between the scopes of two or more

software modules.

• Precise interface/API: In order to facilitate the usability of a module, the supported

Application Programming Interface (API) should be defined and implemented in a

crystal-clear, distinct and documented manner. Moreover, the interface needs to be

comprehensive and minimal while it should cater for publishing to the system the

predefined module’s functionality avoiding possible misuse.

• High degree of abstraction: The coding specifics of a module should be private.

Hence, modules should not reveal any functional details, interdependencies or their

own data-structures. Moreover, the published API’s functionality should be completely

unrelated to the implementation details of a module, since updates in coding specifics

should not influence API’s functionality and therefore any of its clients.

• Robust implementation: The implementation mechanism of a module needs to be

infallible, capable, well tested, and compact. For that reason, it is imperative that

development procedure upholds best coding practices and exhaustive testing is

executed.

• Minimal interrelations: he dependencies among modules augment the complexity of

the integrated system. Therefore, an efficient modular system design minimizes the

interactions between modules keeping the overall systems’ complexity at low levels.

VOXReality adopts the modular design approach, for defining its architecture. Consequently,

system functionality can be divided and assigned in components that will cover the

requirements from different tasks and work packages. Consequently, modular design

empowers different teams to develop in parallel their designated system segments, calling for

the real-time cooperation between partner teams.

3.2 RESTful Architecture

A modern, widespread and standardized software architectural style for communication

between computer systems is REST [3], which stands for Representational State Transfer. It

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 27

utilises the synchronous HyperText Transfer Protocol (HTTP) in a stateless, client-server

approach that facilitate the direct communication between the end-user point (client) and the

backend point (server). RESTful API invokes the HTTP protocol's request types (POST, GET,

PUT/PATCH, and DELETE) in order to implement user’s requests for Create, Read,

Update/Modify and Delete respectively.

The adoption of the RESTful architectural concept contains several notable advantages that

are summarized below:

• Lightweight: Requires a limited bandwidth consumption, especially when JSON is

selected for the RESTful API implementation.

• Flexible and language independent: Since it utilises the HTTP protocol it is format-

agonistic and programmers can use XML, JSON, HTML, etc. Moreover, developers

can easily utilise REST APIs without much processing overhead.

• Scalable: As a result of client server stateless communication, a module may be

scaled up from the development team without much difficulty. Moreover, when the

requested data from one of the queries are communicated properly, it is feasible to

carry out a migration from the initial server to another or apply modifications on the

database at any time without further complications. For instance, it is simple to employ

different servers for hosting the front-end and the back-end of an application

separately.

3.3 Documentation

Appropriate documentation expedites considerably development and integration activities. It

can be regarded as a universal requirement for any project and should applied in every

development and integration phase. With the help of software documentation, the functionality

of software modules that were developed in the past can be easily comprehended from

developers, even more if they have been written by someone else. Additionally, software

documentation, substantially facilitates future updates, debugging and maintenance activities

within module’s code, where code “comments” help the programmer to understand the code’s

functionality and act accordingly. Summarizing, it is an excellent guideline to be applied during

project’s developing lifecycle.

3.3.1 Source Code Documentation

Working in collaboration with teams in different location and distributed code development

responsibilities that can be modified over time, presents a high risk to generate source code

that may be difficult to study and understand. If such a case occurs, it would considerably

reduce the possibility of source code reusability, either to maintain or to extend/modify/update

it. Consequently, developing code that is understandable and can be easily maintained by any

team programmer or even from different teams forms a vital factor. A method to accomplish

the above condition is to produce sufficient code documentation.

As software documentation can be characterized any written text or illustration that

accompanies software code or is inserted inline in the source code. The documentation

describes software’s intended operation, how to use it, and may presents different meanings

to people, according to their roles [4]. It is useful for the developers that update or debug

program’s code, as well as those who are willing to interface with it through API.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 28

With the application of code documentation methodology, the development process will be

enhanced with the following characteristics:

• Knowledge sharing: Usually plain code is not straight forward to understand and fails

to provide the means for preserving the ideas, decisions and insights of the original

programmers. In case that someone else is required to undertake a piece of software

that was developed by someone else who is no longer member of the development

team, meaningful code documentation can provide solutions regarding the transfer of

programming logic to other team members.

• Troubleshooting: having useful documentation enables developers to gain a better

understanding of code implementation specifics, speeding up the resolution process

by quickly identifying the problematic code sections.

• Extension: Code documentation details dependencies between

components/modules. This can be useful since it empowers the developers to make

more informed decisions regarding the implementation of new functionalities or the

integration with an external platform.

VOXReality developers are encouraged to perform appropriate source code documentation

by following the guidelines below:

• Make comments short and concise: which can contribute to the readability of the

comments, making them effective.

• Journal the comments: by including the name of the author and the date, any

potential incompatibilities can be reported to the original developers.

• Insert comments, above code: comments should be positioned before the source

code to which the developers provide documentation. While editing the code,

comments may be displaced. If such a case occurs, the programmer should look after

the text format and adapt comments position, correspondingly. According to this

guideline, comments of functions should be inserted ahead of the function definition,

explaining the logic of the function, along with the input and output parameters.

• Maintain comments in sync with code: While the maintenance/ update procedure is

active, the source code keeps differentiate itself from previous versions, leading to the

creation of inconsistences between the updated functionality of the code’s current

version and the content of the now obsolete comments. Since such discrepancies in

source code documentation are hindering every code processing activity, consistent

documentation should be realised by encouraging programmers to update comments

in tandem with the respective source code.

3.3.2 API Documentation

API documentation can be regarded as a methodical explanation of the functionality that a

specific API is publishing, along with appropriate information on how to instantiate this

functionality. The purpose of providing such a documentation is to enable those that are going

to use the respective API, to do so in a documented and secure manner, following the

definitions and requirements of the API.

Meaningful API documentation, aside from the description of information regarding the

process of testing, configuration and integration with the API, it should also analyse how such

information will be provisioned in an easily accessible and usable manner. Since the

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 29

procedure of maintaining an updated and consistent API documentation may become effort

demanding, due to the continuous evolution of APIs supported functionality, a method that

can be proved useful is the utilisation of online API documentation. Hence, VOXReality

considers the adoption of OpenAPI Specification (OAS) [5].

As stated by the OpenAPI Specification [6] of the current version (3.1.0), OAS is a community-

driven open specification under the umbrella of the OpenAPI Initiative, a Linux Foundation

Collaborative Project. OAS defines a standard, programming language-agnostic interface

description for HTTP APIs, such as the RESTful, that facilitates discovery and understanding

of the service’s capabilities, without source code knowledge, supplementary documentation

or network traffic inspection. When a remote service is properly defined via OpenAPI, a “client”

with a minimal amount of implementation logic, can understand and utilise the service

successfully.

Well-known solutions for online documentation, following OAS, of RESTful APIs include

Swagger [7] and apiary [8]. Moreover, online documentation can be facilitated with the help of

API development frameworks, such as Django REST framework [9] or Spring Framework [10].

Regarding VOXReality implementation activities, partners’ development teams are strongly

recommended to document the developed APIs utilising online documentation tools (e.g.

Swagger).

3.4 Open Source

Open source is considered as the source code that is made freely available for potential

modification and redistribution [11]. Products that are benefit from open source code should

include permission to use the source code, design documents or content of the product.

Additionally, since open source grants permission for a piece of software to be

used/reviewed/updated by any interested programmer, there is a solid opportunity to benefit

from the knowledge of other developers as well as to participate to the group of potentially

contributing developers and get involved in the further evolution of the aforementioned open-

source code.

Open source and respective projects usually come with automated, asynchronous and lock-

free workflows, making them a modern option. The constantly accelerating pace of

technological progress, especially in the field of Information Technology (IT), led towards the

adoption of open-source concept even from market dominant IT technological giants in order

to actively participate, contribute and benefit from the new technological developments. Hence,

IT technology leading corporations like Amazon Web Services, Google, IBM, Intel, SAP,

Adobe, Microsoft etc. are significant contributors and active participants in many open-source

projects and initiatives.

Finally, it should be mentioned that VOXReality components are anticipated to be available

as Open Source, thus the appropriate course of action, regarding the application of

standardized practices for the development of project’s technical outputs, will be taken.

Additionally, the VOXReality components will be meticulously and thoroughly documented

provide information regarding each component’s functionality, technical specification of

utilised APIs, deployment information and instructions that describe its appropriate application.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 30

4 Integration and Validation Methodology

This section analyzes the integration and validation methodology, including the roles involved

in these processes and their responsibilities. Additionally, the integration and validation cycle

as well as the various phases and the time-plan for these activities are presented. In

VOXReality, the integration and validation methodology has as goal to guarantee that the

delivered components are successfully implemented and integrated.

To better understand the integration and validation methodology of VOXReality, the outcomes

of the project should be defined, which are:

1. Set of pre-trained AI models,

2. Codes and modules for building and use AI models, including inference codes that can

be used with the VOXReality AI pre-trained models,

3. AI tools for:

a. Sub-network extraction based on “once-for-all” training scheme,

b. Finetuning and optimization

The developed VOXReality outcomes will be publicly available to third parties, including those

who will participate in Open Calls. Specifically, those outcomes can be utilized by third parties

to perform a variety of actions. For instance, third-party users can infer the pre-trained models

using the appropriate inference codes, they can execute the AI tools and perform modification

of the software codes to fit in their needs. Eventually, third-party users will be able to

implement their own applications using the VOXReality components.

4.1 Roles and Responsibilities

The following roles have been identified in the integration and validation process:

1. VOXReality development team:

a. AI Engineer, who is responsible to design and develop AI models and the

suitable algorithms for the VOXReality project. Additionally, the AI engineer

evaluates and optimizes the performance of those developed AI models. At

VOXReality project, the AI engineer generates all the needed AI models as well

as the codes that will be used to create those AI models and perform the

inference of them.

b. Software Developer, who are in charge of providing any software component

needed for the project as well as to contribute to testing.

2. Users, who are the final actors of the deployed VOXReality applications. The various

users will evaluate the VOXReality solutions through pilots, testing usability of the

different functionalities as well as the user experience of the integrated system and

reporting the test results.

4.2 Integration and Validation Cycle

This subsection describes the integration and validation activities and strategies of

VOXReality AI models and software components. Figure 21 shows the validation and

integration cycle.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 31

Figure 21: Development and integration cycle

In VOXReality AI Engineers build robust, state-of-the-art AI models that can be used for ASR,

multilingual translation, visual grounding of language models as well as in dialogue system for

various tasks. To achieve this, some specific steps must be followed. Initially, it is important

to gather the relevant data for each task. Those datasets will be accordingly processed and

prepared, including data cleaning, data augmentation and feature engineering. The next step

is to select the appropriate AI model architecture and parameters for the task and then to train

the AI model using the processed data. After the model has been trained, it is validated on a

separate set of data to evaluate its performance based on specific metrics.

The validation of AI models is a crucial step in the development and deployment of AI models,

which guarantee that the model can make accurate predictions on new, unseen data. Through

this process, issues, limitations, and biases in the models are identified while it can be ensured

that the model will perform well on real-world data. To evaluate the performance of AI models,

appropriate metrics will be defined. The choice of metrics depends on each specific task and

the goal of the developed models. In VOXReality, the developed AI models will be validated

at laboratory environment, using openly available dataset and the AI Engineer that creates the

AI models is responsible to validate the model and to be sure that it can achieve satisfactory

results. All this information about AI models validation, including the selected metrics and the

achieved performances, will be provided at D3.1 “Advanced AI multi-modal for XR analysis

V1” in M15 and at D3.2 “Advanced AI multi-modal for XR analysis V2” in M30.

The VOXReality AI Engineers and developers perform the above-described steps to train AI

models at their own servers, utilizing their internal hardware and software resources. Once

the processes of validation and refinement are done, the VOXReality AI Engineers will upload

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 32

the trained models to Hugging Face1, which is a platform for sharing and deploying natural

language processing (NLP) models. Hugging Face provides a centralized location for

developers and AI engineers to share and easily access pre-trained NLP models. When an AI

model is uploaded to Hugging Face, it is available to other developers and AI Engineers to

use it and build their own applications. Detailed information about the sharing of trained

VOXReality models will be provided at the D4.1 “Model deployment analysis V1” at M17 as

well as at the D4.2 “Model deployment analysis V2” at M32.

Additionally, software components will be implemented during the project. Specifically,

software codes and modules that are used to build the AI models and to perform the inference

of them will be developed by AI Engineers. Moreover, various AI tools will be created, focusing

on the sub-network extraction based on “once-for-all” training scheme, finetuning of the trained

VOXReality AI models as well as their subsequent optimization afterwards.

DevOps software development practices, such as Continuous Integration and Deployment,

will be utilized to assure agile and smoothly development of components, integration and

testing. In VOXReality project, it is decided to use GitLab as the main continuous integration

tool and for software components versioning. A detailed description of the DevOps practices

applied in VOXReality is provided in section 5. To achieve a successful development and

integration of various components, laboratory testing could be performed. The aim of the tests

is to identify issues as early as possible, to ensure compatibility, to improve reliability and at

the end to enhance performance. Specifically, VOXReality will consider the following

laboratory tests, which may include:

• Unit testing focuses on verifying the functionality of individual components of the

software system. Those kinds of tests are typically automated and are designed to

check if the tested component behaves as expected under various conditions and

inputs. The purpose of those tests is to identify defects as early as possible in the

development process. It may be performed in isolation from the rest of the system

which varies based on the stage of the software development process. In VOXReality,

separate unit tests will be planned and executed in each technical work package and

the owner of each component will be responsible to create the unit tests.

• Integration testing aims to test the interactions and interfaces between different

components of the system. The purpose of those tests is to verify that the various

components of the system can work together as expected without any errors or

defects. Therefore, the focus of those tests is on the integration points between

different components. Typically, the integration tests are performed after separate

components have been tested in isolation using unit tests.

• Performance testing evaluates the performance and responsiveness of a software

system under various workload and stress conditions. The purpose of those tests is to

identify bottlenecks and other performance issues of the system as well as to

determine its capacity and scalability. To perform those tests, it is needed to run a

series of tests and simulations to measure how well the system under different

conditions, which in the case of VOXReality those conditions can be heavy load, many

users connected in the applications, extended use. The tests may measure various

aspects of performance, such as response time, resource usage.

1 https://huggingface.co/

https://huggingface.co/

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 33

Pilots test the system in real-world environment and gather feedback from the users to identify

any issues or areas for improvement of the XR applications but also to collect information

about their overall experience. Specifically, the aim of VOXReality pilots is to validate the

usability and the user experience of XR applications. Specifically, the usability of XR

application refers to how user-friendly and effective the application is in providing an

immersive experience within XR space. Regarding the user experience of XR applications,

this term refers to the overall quality of the user’s interaction, within XR space.

In VOXReality, two pilot phases will take place. During the pilots, the developed system is

provided to a limited number of users for evaluation and feedback. The users are asked to

use the system in realistic setting and then to give their feedback in some questionaries. In

VOXReality, two pilots are planned to be performed, the 1st during M19-20 and the 2nd during

M31-M35. The scenarios of pilots will be presented with details at D2.4 “Organisational

preparation for VOX pilot scenarios and PRESS analysis V1” in M10 and at D2.5

“Organisational preparation for VOX pilot scenarios and PRESS analysis V2” in M26.

Finally, the third parties’ users can access the publicly available VOXReality code using the

GitLab and the pre-trained VOXReality AI models via Hugging Face. Specifically, they can

access the public repositories of GitLab and download the codes, while they can find and use

the corresponding AI models through Hugging Face. Those research outputs, both

VOXReality software codes and AI models can be modified and used by third parties to

develop their own applications. During VOXReality project, third parties will use the

VOXReality outcomes via Open Calls to further extend the use cases and the application

domains.

In VOXReality open calls phase, third parties’ users will utilize and validate the components,

providing feedback about their functionalities. During this phase, it is possible for the

VOXReality technical partners to perform refinements of software components based on the

feedback. Additionally, the evaluation remarks and observations from third parties’ users will

be contained and discussed in the D6.3 “Lessons learned, success stories and exploitation

plan update” in M36. In the case of unsolved issues from the validation of components during

the open calls phase, the D6.3 will present possible reasons that may have contributed to this

happening, potential solutions as well as other recommendations and actionable suggestions

in order to avoid undesired behaviors.

4.3 Integration and Validation Phases and Time-plan

The VOXReality project will be executed over a period of 36 months, organized in three (3)

phases, following a spiral iterative development process. VOXReality’s phased approach is

presented in Figure 22, with each one feeding into the next to continually refine the project’s

results and activities. During the project, two pilot phases will be carried out. The VOXReality

components will be ready prior to the beginning of each pilot phase. The initial version of

VOXReality components (ver. 0) will be released within the second phase and especially after

the end of first pilot phase. The final version of components (ver. 1) will be released within the

third phase, after the end of second and final pilot. The three phases that combine and

structure these activities efficiently in order to reach the desired outcomes are the following:

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 34

• Phase I – Design: The first phase of the project spans over the first ten months and

will focus on the early design activities of the research activities as well as the

challenges as defined by the use cases that they will seek to address. The

requirements will be analysed in order to retrieve the technical and systemic

requirements for each data-driven model and the envisaged application, which will

then drive the design and lead to the definition of the VOXReality models’ architecture

and data formats. In this phase, also the specific test scenarios, in which new

technology will be validated, and the goals of these tests will be defined. Finally, within

this phase the technical team of VOXReality will set-up the integration and

development environment (i.e. tools, source code repositories, issue reporting, etc.)

that will be used during the project’s lifetime.

• Phase II – Core Developments: The second phase of the project lastes ten months

and focuses on the core development of the VOXReality models. Within this phase,

the initial version of VOXReality models are developed and delivered. Before delivery,

the models will be technically verified and validated on a functional, technical and

workflow basis by the VOXReality technical team. At the end of this phase, the first set

of trials and validations will be performed by end-users, including functionality, and

user experience tests for both the VOXReality models and deployed applications.

• Phase III – Maturation: The final, third phase of VOXReality, will span the last sixteen

months of the project and will include the refinements and improvements of the

VOXReality models and delivered applications, based on the feedback received from

the first validation phase. Following the paradigm of second phase, a thorough

technical assessment of the models and applications will be conducted before their

final validation with end-users in the second pilot for ensuring their robustness and

usability. The phase will conclude with the final version of VOXReality models, XR

applications as well as final pilots.

Figure 22: VOXReality’s phased approach

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 35

Overall, two major development cycles are foreseen, each one composed of requirement

collection, technology design, research and development activities and user testing and

evaluation. Smaller iterative steps will complement the two major cycles, following a SCRUM2

methodology procedure that will reduce the overall time of development and enable timely

problem resolution, while supporting the regular communication of progress and outcomes

within the consortium.

5 Development Infrastructure and Integration Tools

VOXReality adapts today's modern business environments. Specifically, VOXReality

recognizes that it is imperative for product development teams to maintain an optimal

workflow. Having a well-tuned workflow not only keeps a team productive, but it also helps

them deliver software that is reliable and in a timely manner. Therefore, VOXReality

implements DevOps processes which are critical for the involved project’s teams to maintain

the outcome of the project. To this end, VOXReality uses multiple environments to ensure that

the resulted solution is rigorously tested before it is deployed and made available to users.

These multiple environments consist of the following:

• Development Environment: It will be the first line of defence against bugs for

VOXReality and the deployed vertical solutions. This environment will allow

VOXReality developers to deploy their code and test any newly implemented features.

Any bugs found will be dealt with before re-deploying for further testing. The process

will be iterated until the code is ready for the end users.

• Production Environment: Once the code will be thoroughly tested, it will be then

deployed to production where it will be made available to end-users.

5.1 DevOps Approach

According to the traditional software development lifecycle (SDLC) it is common for different

software teams to develop code working in isolation from the operators that cater for the

maintenance of the system’s execution environment managing servers and applications.

Developers focused almost exclusively on how to implement the software system that would

fulfil the user requirements while operators centred their attention on avoiding any rapid

changes without proper safeguards that could destabilize the operation of the production

system. With the arrival of modern DevOps practices the above segmentation is changed.

DevOps can be defined as a collection of cultural philosophies, practices, and tools that boost

an organization’s ability to deliver applications and services at an accelerated rate, outpacing

organizations that implement and improve products using traditional software development

and infrastructure management processes. Consequently, with the adoption of DevOps

strategy, organizations can build, test and release software much faster and safer than before,

while keeping customers satisfied and compete more effectively in the market.

2 https://www.scrum.org/

https://www.scrum.org/

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 36

Figure 23: DevOps Lifecycle Stages

In order to illustrate DevOps lifecycle procedure, the process can be divided into phases which

form the DevOps pipeline as illustrated in Figure 23. Specifically, the tools and processes used

throughout the various stages can be described as follows:

• Plan: The stage covers everything that happens before the developers start writing

code. Requirements and feedback from stakeholders and customers is used to build

a product roadmap to guide future development.

• Code: The code development takes place at this stage. The development teams use

tools and plugins to streamline the development process, eluding security flaws and

lousy coding practices.

• Build: Subsequent to the coding phase completion, the development team requests

the merging of the new code with the shared codebase. The request triggers an

automated process which builds the codebase.

• Test: Following the successful completion of the previous stage, the build is deployed

to the test environment, where a series of manual and automated tests like user

acceptance test, security test, integration testing, performance testing are performed.

• Release: By this stage, the build is ready for deployment into the production

environment. Since the build passed the testing procedure, the operations team

schedules updates or sends several versions to production, according to the

organizational requirements.

• Deploy: The build is released into production environment.

• Operate: The operations team administers hosting configuration in order to make the

new version accessible to users. Moreover, provisions for the collection of user

feedback information are utilized.

• Monitor: At the “final” stage, the operations team monitors data collected from

customer behavior, application performance, errors along with potential bottleneck in

the DevOps workflow and feedbacks appropriate input to the development team

initiating a new lifecycle iteration.

One of the major benefits of DevOps adoption is the improved communication between

development and operations teams. This leads towards faster and more efficient deployment

processes, as well as improved quality and accuracy of software. Furthermore, DevOps can

minimize the amount of time spent on manual tasks, which can increase resource availability

for more important tasks. Additionally, to the above, there is number of benefits from DevOps

application such as:

• Predictability: Significantly lower failure rate for new releases.

• Maintainability: Effortless recovery from new release crashing since earlier versions

can be restored as needed.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 37

• Quality: Incorporating infrastructure issues can enhance software development quality.

• Resiliency: Software system is more stable, secure, and changes are auditable.

• Time to market: Streamlined software delivery significantly scales down time to market

period.

• Cost-efficiency: Improved cost-efficiency during software development.

On the other hand, one of the most important challenges regarding DevOps application is the

achievement of close collaboration between different teams of the consortium. Developers

and IT professionals must join forces to implement and deploy software, while ensuring that

the software meets the needs of the customer. Additionally, DevOps teams must ensure

successful software maintenance and update procedures throughout the whole product

development lifecycle.

5.2 CI/CD

Continuous Integration (CI) is a developer technique for code integration while maintaining a

working system through the whole process. The methodology incorporates small changes to

the system by integrating frequently (usually at least daily) on the mainline by means of

appropriate tools supporting automation with lots of automated tests. This empowers different

developer groups to work on shared code and boosts the awareness regarding the

development status and quality of the system. Furthermore, Continuous Integration (CI)

usually counts on developers to implement Test-Driven Development (TDD) with constant

refactoring practice. When a developer is unit-test-driving his/her code, it is made certain that

the local software copy implements the specified requirements.

Continuous Deployment (CD) abstracts to the automated deployment of every updated -

release- version of an under-development system to the production environment. Successive

to the continuous integration practice that is described above, when a system release

advances to a certain maturity level, certified by specific, predefined conditions, CD gets to

work at updating the previously deployed running version of the system automatically,

minimizing upgrading downtime.

Integrated together, CI/CD formulates a pipeline that accepts new developments and deploys

an updated running version of a system in the designated execution environment. In

VOXReality a CI/CD environment is already organized in GitLab. Figure 24 displays the

GitLab’s CI/CD pipeline in an abstract level.

Figure 24: General CI/CD pipeline – Source: about.gitlab.com

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 38

The suggested CI/CD pipeline operation is clarified in more detail in Figure 25. More

specifically the main phases of the GitLab’s CI/CD procedure that is detailed in the figure, can

be described as follows:

• A particular piece of software is completed and wishes to be integrated to a module

functionality.

• The developer specifies unit tests for the relevant piece of code regarding the

evaluation of the modules’ output results.

• The above-mentioned code developments are committed from their local repository to

a branch of remote GitLab repository that is a dedicated development branch defined

in the CI infrastructure.

• The developer applies for code merging.

• The CI/CD pipeline procedure, for the specific project, is triggered. The preconfigured

unit test(s) are performed from CI platform.

• In case of successful unit tests, the merge request is accepted, and the newly

committed source code gets part of the code main branch.

• In any other case, the merge request is rejected signalling the implementation of

appropriate code updates in order to fully satisfy unit and system testing procedures.

• The process advances to the CD part, that builds and deploys the package.

• Following the successful CD phase, the new system version is running on the

development infrastructure and is subjected to user testing/production.

Figure 25: VOXReality GitLab’s CI/CD pipeline steps - Source: docs.gitlab

Focusing to CD part of pipeline, if all the tests are passed successfully, the code is considered

ready to be deployed. The CD part of pipeline is responsible to automate the packaging and

to prepare the software components for deployment. In VOXReality, the outcomes of this step

are docker images, which are pushed to the VOXReality DockerHub. Then, the docker

containers are deployed to development server.

Moreover, the VOXReality CI/CD pipeline has been further enhanced towards security

processes. Specifically Static Application Security Testing (SAST) is applied. This type of

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 39

testing is used to check the code without its execution, allowing the developers to find security

vulnerabilities in the source code early in the early stages of the development. The overall

VOXReality pipeline is illustrated in Figure 26.

Figure 26: VOXReality CI/CD pipeline

5.3 Source Code Management

Source code management (SCM) is the procedure of tracking source code modifications.

Maintaining an updated log of the modifications applied to the common codebase enables

programmers, developers and testers to verify that they are always working with appropriate

and up-to-date code, while enabling fast conflict resolution during code integration from

diversified development teams. SCM practice is also known as Version Control System

(VCM).

The most prevalent VCM is Git3 which is an open-source distributed software for tracking

changes in any compilation of files. Web platforms, originating from Git management software,

that are available for hosting project source codebases, include GitLab4 and GitHub5, that

support Git repository management as well as code reviews, issue tracking, wikis etc. The two

aforementioned platforms above offer a complete solution for software management in a

single stand-alone web platform that provide for projects’ entire software development

lifecycle. Regarding VOXReality, source code management will be based on Git, the

underlying system behind GitLab, which is defined as the suitable CI/CD platform for the

project.

5.4 Containers

Containerization introduces an Operating System (OS)-level virtualization that simplifies the

deployment and execution of distributed applications. Containers differentiate from a

“traditional” virtual machine solution since they virtualize, as far as the operating systems (OS)

layer, while VMs, through a hypervisor, virtualize also physical hardware. Consequently, they

offer a lightweight alternative that involves encapsulating an application in a container with its

own operating system, they are portable and may hosted reliably from different computing

environments, while multiple containers may share the same OS kernel. The term “container”

comes from the logistics field where a packaging container refers to a large, metallic box that

3 http://git-scm.com/
4 https://about.gitlab.com/
5 https://github.com/

http://git-scm.com/
https://about.gitlab.com/
https://github.com/

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 40

“encapsulates” smaller crates, designed for easy and fast loading and unloading during

transportation or storage.

Among the first and most popular containerization technology applications today is Docker 6.

Docker follows the platform as a service (PaaS) concept, that uses OS-level virtualization to

deliver software in packages. A Docker container image is a lightweight, standalone,

executable package of software that incorporates everything (code, runtime, system tools,

system libraries and settings) needed to run an application [12]. Moreover, open-source

systems for automating deployment, scaling, and management of containerized applications,

suitable for hosting Docker containers, like Kubernetes (K8s) [13] are available for application.

VOXReality conforming to the modular architecture scheme that is described above, selects

Docker for the project’s containerization framework and strongly advice the technical

developers of the project to utilize containers for the containerization of their implemented

software modules. Eventually, VOXReality development infrastructure will host the

containerized modules of the project.

5.5 VOXReality CI/CD Framework Instantiation

The GitLab CI/CD framework has been set up and configured within the public GitLab instance

for the VOXReality project. The official GitLab group of VOXReality is entitled “Horizon Europe

VOXReality” and is publicly accessible at https://gitlab.com/groups/horizon-europe-voxreality.

Figure 27 provides a snapshot of the VOXReality’s GitLab repo. The group contains 6

subgroups that represent the main thematic entities that will be developed in the VOXReality

project.

6 https://www.docker.com

https://gitlab.com/groups/horizon-europe-voxreality
https://www.docker.com/

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 41

Figure 27: VOXReality GitLab Home page

Within each subgroup, the development activities are organized in separate subgroups

according to relevant tasks, which is a way to structure and organize repositories within a large

project. Specifically, Figure 28 shows the content of the subgroup “Vision Language Models”.

Figure 28: VOXReality Vision and Language Models Subgroup.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 42

VOXReality has configured the CI/CD pipeline that enables the automation of integration and

deployment procedures using the GitLab CI/CD platform. The CI/CD pipeline is operated by

three GitLab runners, which have been deployed and integrated in the development server.

Figure 29 shows the GitLab runners on VOXReality. More information about the development

infrastructure is provided in Section 5.6.

Figure 29: VOXReality GitLab runners

VOXReality docker images are created based on the uploaded source code in GitLab and

they are stored to the VOXReality docker repository, which has been established for the needs

of the project. Guidelines will be provided to assist developers to trigger this procedure, while

a sample application has been created in the VOXReality GitLab that can be used as example.

The VOXReality profile in the DocherHub repository is available at

https://hub.docker.com/u/voxreality. Figure 30 illustrates a screenshot of the VOXReality

profile.

Figure 30: VOXReality docker image repository.

https://hub.docker.com/u/voxreality

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 43

5.6 VOXReality Development Environment

VOXReality development infrastructure is utilized by consortium partners to validate and test

the trained AI models as well as the developed AI tools. The infrastructure is based on the

Microsoft Azure7, which is a cloud computing platform with a significant and continuously

expanding set of services that help DevOps operators to build solutions according to their

business goals. Azure services support everything from simple to complex, based on simple

web services for hosting the business presence in the cloud. It also supports running fully

virtualized computers, enabling operators and developers to manage their custom software

solutions. Apart from that, Azure provides a wealth of cloud-based services like remote

storage, database hosting, and centralized account management, as well as new capabilities

like artificial intelligence (AI) and Internet of Things (IoT) focused services. Azure currently

offers more than 200 products and cloud services designed to help organizations to bring new

solutions to life – to solve today’s challenges and create the future. In this regard, it supports

them to build, run, and manage applications across multiple clouds, on-premises, and at the

edge, with the tools and frameworks of your choice.

The requirements defined by the VOXReality technical partners for the development

purposes, set the route towards a selection of infrastructure with the following characteristics.

These initial requirements were identified in a “pay-as-you-go” plan, to allow for further

changes later, if required. Those requirements are presented in Table 3.

Table 3: Development server characteristics.

Category Description

OS / Software Ubuntu Linux

CPU 4 Cores

RAM 28 GB

Temporary Storage 180 GB

GPU 1 x T4

In general, the technical partners, that are developing the AI models and the various tools,

considered as critical to base the development in a series of virtual machines (with four virtual

CPUs) accompanied with a GPUs with at least 16GB of memory. The synthesis presented in

the Table 3 is considered as ideal to run Machine Learning and Artificial Intelligence workloads

utilizing CUDA, TensorFlow, PyTorch, Caffe and other frameworks. This selection allows the

use of different operation systems (Windows, iOS, Linux, etc) to support effectively and

efficiently the technical partners selections. Moreover, this selection providers adequate

network configuration properties for the development of the VOXReality development services

(bandwidth, protocols, configurations, etc.)

7 https://azure.microsoft.com

https://azure.microsoft.com/

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 44

6 Conclusion

Well-defined and meticulous planning is a prerequisite for successful project implementations.

Projects that involve multiple teams working on various subsystems in different locations, such

as VOXReality, require well-organized procedures to efficiently handle complex development

tasks. Therefore, it is vital to carefully coordinate parallel development efforts and to facilitate

the integration of subsystems into a unified system to accelerate their progress.

This document presents a description of VOXReality components as well as the process

diagrams of each use case, describing the main interactions among them and specifying

representative generic processes that will be implemented through the project. Moreover, the

integration guidelines for the VOXReality project are presented, including recommendations

for the interfaces’ technologies and proper code, as well as API documentation, consistent to

the open-source support of the project. Additionally, VOXReality’s DevOps practices are

introduced, in order to broaden the level of automation and therefore reduce the risk, as well

as the time and effort required for integrating individual software modules, while facilitating

proper methodologies within the integration and deployment process. Finally, the development

environment is presented.

D2.3 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES D2.3
DEVELOPMENT INFRASTRUCTURE AND INTEGRATION GUIDELINES / 45

7 References

[1] VOXReality, "Definition and Analysis of VOXReality Use Cases V1," 2023.

[2] D. Davis, J. Burry and M. Burry, "Untangling parametric schemata: enhancing

collaboration through modular programming," Proceedings of the 14th international

conference on Computer Aided Architectural Design, University of Liege, Liege, 2011.

[3] C. Pautasso, E. Wilde and R. Alarcon, REST: advanced research topics and practical

applications, Springer, 2013.

[4] A. Forward and T. C. Lethbridge, "The relevance of software documentation, tools and

technologies: a survey," in Proceedings of the 2002 ACM symposium on Document

engineering, 2002, pp. 26-33.

[5] OpenAPI, "OpenAPI Specification," OpenAPI, [Online]. Available:

https://swagger.io/specification/. [Accessed April 2023].

[6] GitHub, "The OpenAPI Specification," [Online]. Available:

https://github.com/OAI/OpenAPI-Specification. [Accessed April 2023].

[7] SmartBear, "Swagger," [Online]. Available: https://swagger.io/solutions/api-

documentation/. [Accessed April 2023].

[8] Oracle, "apiary," [Online]. Available: https://apiary.io/. [Accessed April 2023].

[9] Django REST framework, "Django REST framework," [Online]. Available:

https://www.django-rest-framework.org/. [Accessed April 2023].

[10] "Spring Framework," [Online]. Available: https://spring.io/. [Accessed April 2023].

[11] Wikipedia, "Open source," [Online]. Available:

https://en.wikipedia.org/wiki/Open_source.

[12] Docker, "What is a Container?," Docker, [Online]. Available:

https://www.docker.com/resources/what-container. [Accessed April 2022].

[13] kubernetes, "Production-Grade Container Orchestration," The Linux Foundation , 2020.

[Online]. Available: https://kubernetes.io. [Accessed 12 2020].

31 MAY 2023 DEVELOPMENT INFRASTRUCTURE AND INTEGRATION
GUIDELINES / 46

