

VOICE DRIVEN

INTERACTION IN XR

SPACESVOICE DRIVEN

INTERACTION IN XR

SPACES

Model Deployment Analysis V1
WP 4
29/02/2023

Ref. Ares(2024)1612148 - 01/03/2024

01 MARCH 2024 VOICE DRIVEN INTERACTION IN XR SPACES / 2

Dissemination Level

PU Public

PP Restricted to other programme participants (Including the Commission Services)

RE Restricted to a group specified by the consortium (Including the Commission Services)

CO Confidential, only for members of the consortium (Including the Commission Services)

Nature

PR Prototype

RE Report

SP Specification

TO Tool

OT Other

Version 1.0

WP 4

Dissemination level Public

Deliverable lead SYN

Authors Stavroula Bourou, Dimitris Kontopoulos, Apostolos Maniatis

(SYN), Olga Chatzifoti (MAG), Leesa Joyce (HOLO), Athanasios

Ntovas, Georgios Papadopoulos, Stefanos Biliousis, Petros

Drakoulis (CERTH), Yusuf Can Semerci (UM)

Reviewers Manuel Toledo (VRDays); Spiros Borotis (MAG)

Abstract This document describes the work done in the first 17 months of

project regarding the AI models deployment and sharing, once-

for-all training, inference optimization and implementation details

of XR applications.

Keywords Model Deployment, Model Sharing, Deployment Guidelines,

once-for-all Training, Inference Optimization, Interactive XR

Application Development

License

This work is licensed under a Creative Commons Attribution-No

Derivatives 4.0 International License (CC BY-ND 4.0). See:

https://creativecommons.org/licenses/by-nd/4.0/

https://creativecommons.org/licenses/by-nd/4.0/

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 3

Version History

Version Date Owner Author(s)
Changes to previous
version

0.1 2024-01-08 SYN Stavroula Bourou ToC released

0.2 2024-02-16 MAG Olga Chatzifoti Added in Sec. 4.2

0.3 2024-02-16 SYN Dimitris
Kontopoulos

Added in Sec. 4.1

0.4 2024-02-17 SYN Stavroula Bourou Added Sec. 3

0.41 2024-02-19 HOLO Leesa Joyce Added Sec. 4.3

0.5 2024-02-20 SYN Stavroula Bourou,
Apostolos Maniatis

Updated Sec. 3

0.6 2024-02-21 SYN Stavroula Bourou Executive Summary,
Introduction, Conclusion

0.7 2024-02-23 CERTH Athanasios Ntovas,
Georgios
Papadopoulos,
Stefanos Biliousis,
Petros Drakoulis

Added Sec. 2

0.8 2024-02-26 UM Yusuf Can Semerci Contribution to Sec 2, 3,
4

0.81 2024-02-26 UM Yusuf Can Semerci Controls and formatting

0.9 2024-02-26 SYN Stavroula Bourou Final formatting and
controls

0.91 2024-02-28 VRD Manuel Toledo Internal review complete

0.92 2024-02-28 MAG Spiros Borotis Internal review complete

1.0 2024-02-29 SYN Stavroula Bourou Revisions complete

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 4

Table of Contents

Version History.. 3

Table of Contents .. 4

List of Abbreviations & Acronyms .. 6

List of Figures ... 8

List of Tables .. 10

Executive Summary .. 11

1 Introduction .. 12

1.1 Intended Audience ... 13

1.2 Relations to the other activities .. 13

1.3 Document Structure ... 13

2 Model Training and Inference Optimization .. 14

2.1 Overview of State-of-the-Art Methods .. 15

2.1.1 Once-for-All Concept ... 17

2.1.2 Standard AI Model Optimization Techniques ... 21

2.2 VOXReality Model Optimization Approach ... 23

2.2.1 Optimization Methodology I ... 23

2.2.1.1 Experimental Results ... 24

2.2.2 Optimization Methodology II... 25

3 Model Deployment and Sharing ... 27

3.1 Deployment of VOXReality AI Models in Development Server 28

3.2 Deployment Guidelines .. 33

3.2.1 Source code-Based Deployment ... 34

3.2.2 Container-Based Deployment .. 35

3.2.2.1 Deployment using Docker Hub Images .. 36

3.2.2.2 Deployment using Docker Compose .. 37

3.3 Model Sharing ... 38

4 VOXReality XR Applications .. 41

4.1 VR Conference .. 41

4.1.1 System Architecture and Design .. 41

4.1.1.1 3D Models and Scenes Design .. 41

4.1.1.2 Application Workflow Diagram ... 42

4.1.2 Implementation Details .. 48

4.1.2.1 Development Environment Setup ... 48

4.1.2.2 3D Models and Scene Creation.. 49

4.1.2.3 Core Algorithms and Techniques ... 51

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 5

4.1.2.4 User Interface Implementation ... 52

4.1.2.5 Summary of Achieved User Requirements ... 56

4.2 Augmented Theatre ... 57

4.2.1 System Architecture and Design .. 58

4.2.1.1 3D Models and Scenes Design .. 60

4.2.1.2 Application Workflow Diagram ... 63

4.2.2 Implementation Details .. 67

4.2.2.1 Development Environment Setup ... 68

4.2.2.2 3D Models and Scene Creation.. 68

4.2.2.3 Core Algorithms and Techniques ... 69

4.2.2.4 User Interface Implementation ... 71

4.2.2.5 Summary of Achieved User Requirements ... 74

4.3 Training Assistant .. 74

4.3.1 System Architecture and Design .. 75

4.3.1.1 3D Models and Scenes Design/Creation .. 75

4.3.1.2 Application Workflow Diagram ... 78

4.3.2 Implementation Details .. 78

4.3.2.1 Development Environment Setup ... 78

4.3.2.2 Core Algorithms and Techniques ... 79

4.3.2.3 User Interface Implementation ... 81

4.3.2.4 Summary of Achieved User Requirements ... 85

5 Conclusions ... 86

6 References .. 88

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 6

List of Abbreviations & Acronyms

ADB : Android Debug Bridge

AI : Artificial Intelligence

AMD : Advanced Micro Devices

API : Application Programming Interface

ASR : Automatic Speech Recognition

BERT : Bidirectional Encoder Representations

BLEU : Bilingual Evaluation Understudy

CAD : Computer-Aided-Design

CI/CD : Continuous Integration/ Continuous Deployment

CLI : Command Line Tool

CNN : Convolutional Neural Network

Co2 : Carbon dioxide

CPU : Central Processing Unit

CUDA : Compute Unified Device Architecture

CV : Computer Vision

DA : Dialogue Agent

DE : German (language)

DNN : Deep Neural Network

NL : Dutch (language)

ECS : Entity-Component-System

EN : English (language)

ES : Spanish (language)

FLOPS : Floating Point Operations Per Second

FOV : Field of View

FP : Floating Point

GPT2 : Generative Pretrained Transformer 2

GPU : Graphics processing unit

EL : Greek (language)

IT : Italic (language)

ML : Machine Learning

MLP : Multilayer Perceptron

NLG : Natural Language Generation

NLP : Natural Language Processing

NLU : Natural Language Understanding

NMT : Neural Machine Translation

NN : Neural Network

OBS : Open Broadcaster Software

OFA : Once-For-All

ONNX : Open Neural Network Exchange

OS : Operating System

QAT : Quantization-Aware Training

RAM : Random-Access Memory

REST : Representational State Transfer

RNN : Recurrent Neural Networks

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 7

ROUGE : Recall-Oriented Understudy for Gisting Evaluation

SAST : Static application security testing

SDK : Software Development Kit

SIMD : Single Instruction, Multiple Data

SOTA : State-of-Art

UI : User Interface

UVC : Unified Visual Transformers Compression

VFX : visual effects

ViT : Vision Transformers

VL : Vision-Language

VR : Virtual Reality

WCAG : Web Content Accessibility Guidelines

WebGL : Web Graphics Library

webRTC : Web Real-Time Communications

WP : Work Package

XR : eXtended Reality

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 8

List of Figures

Figure 1:The intended life cycle of a VOXReality model. ... 15
Figure 2: Conventional pruning framework VS Proposed pruning framework [3]. 16
Figure 3: The compression scheme of Unified Visual Transformers Compression. 16
Figure 4: The compression scheme of MiniViT. ... 17
Figure 5: Train the network once and quickly extracts the appropriate sub-network for each

different hardware setup. .. 18
Figure 6: Illustration of the progressive shrinking process for CCNs to support different

depth, width, kernel size, and resolution.. 18
Figure 7: The two-stage procedure to train with DynaBert. .. 19
Figure 8: The Prune OFA training scheme. ... 20
Figure 9: Detailed transformer block in an AutoFormer structure with all changeable

parameters. ... 20
Figure 10: Classical weight sharing (left) vs. Weight entanglement of AutoFormer (right). .. 21
Figure 11: The proposed model optimization pipeline. .. 23
Figure 12: A ViT architecture encoder block (a) vs. a ViT-GPT2 encoder-decoder one (b). 26
Figure 13: Example of Dockerfile. ... 29
Figure 14: GitLab CI/CD Add variable. .. 29
Figure 15: GitLab CI/CD Repository Variables. ... 30
Figure 16: Template of .gitlab-ci.yaml file .. 31
Figure 17: GitLab CI/CD Pipeline when push to main.. 32
Figure 18: GitLab CI/CD Create a new tag. ... 32
Figure 19: GitLab CI/CD Pipeline when create a new tag. ... 33
Figure 20: VOXReality DockeHub. .. 36
Figure 21: Example of docker-compose.yml file .. 37
Figure 22: VOXReality Hugging Face repository. .. 39
Figure 23: Workflow for communication with the Virtual Agent. ... 43
Figure 24: Workflow of the Navigation System. ... 45
Figure 25: Graphic Cues of the Navigation System. .. 45
Figure 26: Workflow of the Booth Description System. .. 46
Figure 27: Workflow of the Scene Description System .. 46
Figure 28: Workflow of the Conference Program and General Questioning System. 47
Figure 29: Workflow of the real-time Translation System. ... 47
Figure 30: Blender Interface for room designing. ... 49
Figure 31: Blender Interface for shading. .. 50
Figure 32: Mozilla’s Spoke Interface. .. 50
Figure 33: User Panel element. ... 53
Figure 34: Map Component for the Trade Show Area. .. 53
Figure 35: Language Panel with English language selected.. 54
Figure 36: Translate Button element. .. 55
Figure 37: Virtual Agent Panel (Left), Translation Panel (Right). ... 55
Figure 38: Indicator Button (Left), Hovered Indicator Button (Right). 56
Figure 39: Loading animation. ... 56
Figure 40: AR Theatre app features, indexed by priority, based on user requirements. 57
Figure 41: Communication flow between client, server, devices and docker containers. 60
Figure 42: Digital stage simulation with avatars for 2 physical actors (King, Messenger) and

a VFX actor (Artemis) - front view ... 61

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 9

Figure 43: Digital stage simulation with avatars for 2 physical actors and a VFX actor –

topdown view. ... 62
Figure 44: Layout of the theatrical hall and stage chosen for the performance. 62
Figure 45: Examples of AR VFX, extension to the physical stage with static and animated

objects. ... 63
Figure 46: Examples of AR VFX, narrative elements, environmental effects and animated

models, as described in the actor’s narration. ... 63
Figure 47: Home scene screenshots. .. 64
Figure 48: Introduction scene – section A: instructions for input methods. 65
Figure 49: Introduction scene – section B excerpt: instructions for user interface. 65
Figure 50: Transition panels. ... 65
Figure 51: Performance scene sample with user customized 2D subtitles. 66
Figure 52: Server user interface for remote control of the XR applications. 67
Figure 53: 3D model of the controller with the ray for interacting with the UI and the available

button highlighted in yellow color. ... 72
Figure 54: Tutorial covering all the input methods (2) with a hands-on approach. 73
Figure 55: From wireframes on Miro for discussion and feedback to implementation in the

application. .. 74
Figure 56: The Raptor engine CAD model which is used for the assembly task in the current

use case. .. 75
Figure 57: Parts of the CAD model on the shelve. ... 77
Figure 58: Pre-assembly of the parts with visual guiding cues. ... 77
Figure 59: Hand menu design for different difficulty modes. .. 77
Figure 60: Application workflow diagram of the training assistant. 78
Figure 61: Tooltips displaying visual cues for correctly attached / finished steps. 82
Figure 62: Menu to configure the difficulty level of the training. ... 82
Figure 63: Shelve in the asset bundle, where the object lock feature is displayed on the top-

right corner. ... 83
Figure 64: Table in the asset bundle, where the object lock feature is displayed on the

bottom-right corner. ... 83
Figure 65: Colour-code visual cues showing the correct (green) and incorrect (red) object

selection. ... 84
Figure 66: Colour-coded visual cues with the object destination (yellow) and a guing line

connecting the grabbed object and its destination. .. 84
Figure 67: Menu to configure difficulty levels and snap features. .. 84

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 10

List of Tables

Table 1: The values of the changeable dimensions, where tuples in parentheses represent

the lowest value, the highest value, and step of each tuneable parameter, respectively. 21
Table 2: Inference time and evaluation scores of ViT-GPT2 captioning model running on

GPU. ... 25
Table 3: Inference time and evaluation scores of ViT-GPT2 captioning model running on

CPU. ... 25
Table 4: VOXReality components used in each use case. .. 41

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 11

Executive Summary

The purpose of this document is to present an in-depth analysis and methodology for the

training, optimization, deployment and sharing of VOXReality AI models, as well as to describe

the implementation details of the VOXReality eXtended Reality (XR) applications. Specifically,

the document provides an overview of the state-of-the-art “once-for-all” (OFA) concept, as well

as various AI model optimization techniques. Additionally, the VOXReality model optimization

approach is introduced to decrease the model size and computational requirements while

maintaining performance, ensuring efficient and effective use during the deployment. This tool

also facilitates the export of AI models into common formats like ONNX. Experimental results

demonstrating the effectiveness of the VOXReality optimization tool are also presented.

Furthermore, the document defines the deployment and sharing options for the pretrained

VOXReality AI models, providing clear guidelines on effective deployment and access,

including source code-based deployment and containerization strategies. It also includes the

architecture, design principles, and implementation details of VOXReality's XR applications,

specifically the VR Conferences, Augmented Theatre, and Training Assistant.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 12

1 Introduction

The rapid growth of Deep Neural Networks (DNN) has led to architectures with hundreds of

millions of parameters, demonstrating significant challenges in training and inference

processes. Those challenges are intensifying when the models are deployed in resource-

constrained devices, like edge devices or mobile phones. Specifically, the training phase of

these AI models demands high computational resources, being particularly time-consuming

and power intensive. In addition, the inference of these models requires significant computing

power and can be time-consuming, particularly on devices with limited processing capabilities,

making inference optimization essential for fast and efficient performance. Transformer

models fall into this category of computationally intensive architectures, thus requiring a focus

on training and inference optimization to ensure their efficient and effective use during the

deployment.

VOXReality implements advanced Natural Language Processing (NLP) models based on

transformer architecture. Therefore, it is crucial to overcome these computational challenges

through innovative strategies, ensuring that these AI models are not only powerful but also

practical for deployment in various hardware environments, including those with limited

resources. In VOXReality, we address those challenges by exploring the “once-for-all” (OFA)

training concept, allowing for the efficient creation of sub-networks tailored to specific

hardware and use cases. Additionally, we implement an optimization tool that employs

different techniques like pruning and quantization. This tool also facilitates the export of AI

models into common formats like ONNX, enhancing their adaptability.

Ensuring that AI models are effectively utilized in real-world scenarios is a critical aspect.

VOXReality addresses this by offering a variety of deployment options to facilitate the easy

and efficient use of AI models across different platforms, from edge devices to cloud servers.

The adaptability of these models is further enhanced by VOXReality's comprehensive

deployment guidelines, which assist integration of AI technologies across various applications.

Furthermore, the VOXReality AI models are shared on the Hugging Face platform, to promote

wider adoption and to invite external developers to expand and refine these models, thus

fostering innovation and broadening the scope of their AI solutions.

The VOXReality AI models have been deployed in three distinct use cases: VR Conference,

Augmented Theatre, and Training Assistant, showcasing the versatility of these models in XR

environments and their ability to create immersive experiences. The feasibility of implementing

these applications will be verified through two rounds of pilot testing under real-world

conditions, demonstrating their practical application and robustness. The detailed design and

implementation of these AI models have been meticulously planned to align with both the user

requirements and technical specifications, guaranteeing that the end solutions are not only

innovative but also practical and user centric.

The technical work described in this document is performed in all three tasks of (T4.1, T4.2,

T4.3) of WP4 until the end of the 17th month of VOXReality project. Specifically, Task 4.1

“Model deployment and serving” focuses on the deployment and sharing options of pretrained

VOXReality AI models as well as on the deployment of those models in every use case

scenario. Task 4.2 “Model training & inference optimization” investigates the SOTA methods

for economic model training following the “once-for-all” training approach as well as the

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 13

different optimization techniques. Moreover, in this task, tools for “once-for-all” training and

optimization are implemented by VOXReality consortium. Task 4.3 “Novel Interactive XR

Applications” is responsible for developing the XR applications utilizing the VOXReality AI

models in the use cases.

1.1 Intended Audience

The intended audience for this deliverable includes the VOXReality project consortium and

third-party users, consisting of participants in the project's open calls as well as researchers

and AI & XR professionals interested in exploring VOXReality research outputs. The

document provides the VOXReality optimization approach that could be utilized by the AI

engineers to create cost-effective and energy-efficient AI models, making them suitable for a

wide range of deployment scenarios. Moreover, the provided deployment guidelines can also

be employed by AI engineers and developers to correctly deploy the AI models across various

applications. In addition, the implementation details of VOXReality XR applications can

provide useful information on how technologies can be integrated into various sectors, offering

practical insights for developers looking to adapt these applications to specialized use cases

or environments.

1.2 Relations to the other activities

The VOXReality optimization tool, the deployment guidelines and the model sharing are

strongly dependent on the VOXReality AI models. Therefore, this document is intrinsically

connected with all the tasks of WP3 “Advanced AI muti-model for XR”. Additionally, the model

deployment is closely correlated with the Task 2.3 “Development Infrastructure”. It should be

mentioned that many decisions regarding the implementation of XR applications are made

based on User Requirements and Technical Requirements, extracted from Task 2.1 "User

Requirements" and Task 2.2 "Technical Requirements" respectively as well as by the pilot

planning outlined in Task 5.1 “Planning and Validation”. Finally, this document is linked with

the WP7 “Integration paths” since it offers useful insights into how third-party users from Open

Calls can utilize the research outputs.

1.3 Document Structure

Section 1 provides an introduction of the deliverable’s intended audience as well as an

overview of its content. Section 2 introduces the SOTA algorithms for the “once-for-all” training

approach as well the AI model optimization techniques, providing a detailed background

overview of those topics. Moreover, this section describes the proposed VOXReality two-

stages optimization pipeline that can be applied on the VOXReality AI models. In addition, it

discusses the experimental results obtained from the application of this method. Section 3

details the various deployment methods available for utilizing the AI models, along with

comprehensive deployment guidelines. It also describes the process of model sharing through

the Hugging Face platform. Section 4 includes all the detailed information about VOXReality

XR applications, covering the design and the implementation aspects, such as the

development environment, creation of 3D models and scenes, development and integration

of core algorithms, the various User Interface (UI) elements, etc. Section 5 outlines the

conclusions and discusses future work.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 14

2 Model Training and Inference Optimization

In recent years, Deep Neural Networks (DNN) architectures have become extensively large

with hundreds of millions of parameters. As a consequence, Neural Network (NN) training and

inference phases have become increasingly challenging procedures. Many optimization

techniques have been developed over the years to overcome this, while the growing demand

for deploying neural networks on resource-constrained devices, such as mobile phones and

edge devices, has further underscored the importance of developing efficient optimization

techniques.

Neural Networks, in general, require high computational resources due to their complexity

which typically involves a large number of linear algebra operations with high precision floating-

point variables. The training phase in particular is notoriously time-consuming, often

demanding several days to converge to an acceptable solution. Even the inference of these

models can consume significant power, presenting challenges for deployment in energy-

constrained environments, such as edge devices, which have significantly less computational

power compared to personal computers and servers. Adding to that, mobile devices operate

mostly on batteries, urging developers to optimise the applications to minimize power

consumption and extend the battery life. Furthermore, for applications demanding real-time

responses, such as gaming or communication apps, minimising the execution time becomes

essential to ensure optimal user experience. Based on all the aforementioned, we are led to

the conclusion that neural networks need to be run on a variety of heterogeneous hardware,

each one with different, sometimes unpredictable, constraints.

In VOXReality, we are planning to provide the VOXReality platform with the means to conduct

economical model training and deployment, by exploring a possible adaptation of the “once-

for-all” (OFA) [1] training concept to the project’s models, enabling the extraction of sub-

networks from a single large one, that are conditioned on the targeted hardware and fine-

tuned on the specific use-case. The VOXReality source models are developed under WP3

and focus on automatic speech recognition, multilingual translation, vision-language and

context-aware conversational agents. In addition to the introduction of the OFA adaptation,

we will also develop and release a Command Line Tool (CLI) that will allow users to further

optimise networks produced by the project in a more “traditional” manner, by employing a

series of pruning, quantization, graph optimization and compression operations, additionally

exporting these models into various commonly used formats like ONNX and TorchServe.

All the models developed for the three use cases (Augmented Theatre, Virtual Conference and

Training assistant) are Transformer-based [2]. Transformers are computationally, storage and

memory expensive compared to Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) for a few reasons. Namely, transformers use a mechanism called “Attention”,

which involves the investigation of the relationships between all input tokens. This can be quite

demanding computationally, especially as the input sequence gets longer. Transformers

typically hold a large number of parameters that require extensive memory for storage and

processing. While transformers are great at understanding long-distance connections in data,

this comes at the cost of having to access information from all parts of the input sequence,

which further adds to their computational and memory requirements. Overall, while

transformers are very powerful for specific tasks, they come with their own set of constraints

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 15

and disadvantages compared to CNNs and RNNs, deriving mainly from their higher

computational and memory needs.

VOXReality’s AI models are intended to be deployable in various environments: a) on edge

devices (e.g. HDM or mobile phone - may require heavy quantization and compression), b) on

small computers (e.g. PC or laptop - may require optimizations for SIMD CPU), c) on cloud

servers (e.g. Microsoft Azure virtual machine - may require CUDA GPU optimizations) and d)

on controlled specialised infrastructure may require the use of framework-specific packages

(e.g. a specific game-engine).

In Figure 1, we can see the intended life cycle of a VOXReality model. It begins as a large-

scale generic source model trained with the OFA principal that is afterwards fine-tuned on

additional data, hardware-optimised and exported into a different format, targeted for a specific

use-case. Core of this scheme is the possibility to adapt and utilise the same generic source

model in a multitude of downstream tasks.

Figure 1:The intended life cycle of a VOXReality model.

2.1 Overview of State-of-the-Art Methods

There is a variety of transformers’ optimization techniques and frameworks currently under

development, signalling further the perceived importance of the field. One such framework is

developed under A fast Post-Training Pruning Framework for Transformers [3] which

eliminates the need for retraining, aiming to reduce model size and inference latency. The

framework operates by taking a pre-trained Transformer model, a sample dataset and a

FLOPs/latency constraint as input (Figure 2) and outputs a pruned model that meets the

specified resource constraints. By employing a three-stage decomposition process involving a

Fisher-based mask search algorithm, mask rearrangement and mask tuning, the framework

identifies and prunes redundant components while preserving model accuracy. This retraining-

free approach enables quick and efficient model compression, leading to significant reductions

in FLOPs and inference latency, without compromising performance, making it a practical

solution for optimising Transformer models.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 16

Figure 2: Conventional pruning framework VS Proposed pruning framework [3].

Another approach is the Unified Visual Transformers Compression [4] which presents a unified

framework for compressing Vision Transformers, combining pruning, layer skipping, and

knowledge distillation (Figure 3) techniques to optimise model performance under

computational constraints. Pruning selectively removes redundant weights, layer skipping

adjusts computation patterns across blocks and knowledge distillation transfers essential

information from a larger model to a compressed one. By jointly optimising model weights,

pruning ratios, and skip configurations under specific constraints, Unified Visual Transformers

Compression (UVC) achieves efficient model compression while maintaining performance on

vision tasks.

Figure 3: The compression scheme of Unified Visual Transformers Compression.

An example of extreme compression is XTC: Extreme Compression for Pre-trained

Transformers Made Simple and Efficient [5] which focuses on ultra-low bit precision

quantization to compress large pre-trained transformer models for efficient deployment on

resource-constrained devices. By combining lightweight layer reduction methods, 1-bit

quantization with deep knowledge distillation and data augmentation, longer training budgets,

and careful hyperparameter tuning, XTC achieves state-of-the-art results in extreme

compression, surpassing previous methods in both compression ratio and model performance.

The study systematically evaluates the impact of key hyperparameters and training strategies

on extreme compression, highlighting the importance of simplicity and efficiency in the

compression pipeline. Overall, the research presents a simple yet effective method for extreme

compression of pre-trained transformers, demonstrating superior performance and

compression rates compared to existing approaches.

Another work is MiniVIT: Compressing Vision Transformers with Weight Multiplexing [6] that

introduces a novel compression framework, MiniViT, for Vision Transformers. MiniViT

combines weight sharing, transformation, and distillation techniques (Figure 4) to reduce the

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 17

number of parameters in Vision Transformer models while maintaining or even improving

performance compared to the original models. By multiplexing weights of consecutive

transformer blocks and applying weight distillation over self-attention, MiniViT effectively

reduces model size without significant loss in accuracy. The framework demonstrates its

efficacy through experiments showing substantial parameter reduction in pre-trained models

like Swin-B and DeiT-B, with performance improvements on tasks such as ImageNet

classification.

Figure 4: The compression scheme of MiniViT.

Lastly, Compressing Large-Scale Transformer-Based Models: A Case Study on BERT [7]

focuses on compressing large-scale Transformer-based models, specifically BERT, to make

them more suitable for low-capability devices and applications with strict latency requirements.

By exploring various compression techniques such as quantization, pruning, and knowledge

distillation, the document aims to help researchers and practitioners create lightweight yet

accurate models for Natural Language Processing tasks. The insights provided clarify how

these compression methods impact model size, performance, and efficiency, offering valuable

guidance for optimising Transformer models for real-world applications.

2.1.1 Once-for-All Concept

The Once-for-All (OFA) network training technique introduces a novel approach to deploy

neural networks across various devices with different resource constraints efficiently. Unlike

traditional methods that require training specialised networks for each scenario, OFA

decouples the training and sub-network search processes, enabling the quick selection of

specialised sub-networks without additional training (Figure 5). This innovative methodology

not only improves accuracy and efficiency on a wide variety of devices but also reduces

computational costs and CO2 emissions significantly. By leveraging the OFA training scheme,

users can achieve high performance while minimising the time and efficiently use the

resources needed for model optimization and deployment.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 18

Figure 5: Train the network once and quickly extracts the appropriate sub-network for each

different hardware setup.

Initially, the idea of OFA was conceived for Convolutional Neural Networks [8]. The process,

in its core, is highly non-trivial since it requires the joint optimization of weights belonging to

potentially different sub-networks, in such a structured way to maintain the accuracy of all of

them simultaneously. It is computationally prohibitive to enumerate all sub-networks to get the

exact gradient in each update step, while randomly sampling a few sub-networks in each step

can lead to significant error drops. The challenge is that the different sub-networks are implicitly

interfering with each other, making the training process and convergence of the whole once-

for-all network complicated, at the very least.

The main idea of OFA in CNNs is the progressive shrinking algorithm (Figure 6). Progressive

shrinking works by enforcing training order from large sub-networks to small sub-networks in

a progressive manner within the Once-for-All (OFA) network. This training scheme aims to

prevent interference between sub-networks by starting with training the largest neural network

with maximum dimensions (e.g., kernel size, depth, width) and then progressively fine-tuning

the network to support smaller sub-networks that share weights with the larger ones. By

following this approach, progressive shrinking provides better weight initialization by selecting

crucial weights from larger sub-networks and allows for the distillation of smaller sub-networks,

thereby enhancing the training efficiency of the OFA network.

Figure 6: Illustration of the progressive shrinking process for CCNs to support different depth,

width, kernel size, and resolution.

After training the Once-for-All (OFA) network, the process of selecting a specific sub-network

for a particular hardware device involves utilising a predictor-guided architecture search. This

search method leverages accuracy and latency predictors trained on a subset of sub-networks

to guide the selection of an architecture that meets the requirements of the target hardware

device. By using the predictors to estimate the performance of different sub-networks in terms

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 19

of accuracy and latency, the architecture search can efficiently identify the most suitable sub-

network that balances accuracy and computational efficiency for the given hardware

constraints. This approach enables the OFA network to be specialised for diverse hardware

devices by selecting the optimal sub-network that best aligns with the device's capabilities and

operational needs. Bringing this concept closer to VOXReality needs, essentially equates to

decomposing and adapting the aforementioned processes to transformers.

A work that explores similar mechanisms for transformers is DynaBERT [9] which adapts to

diverse architectural configurations by dynamically adjusting depth (network layers) and width

(the dimensionality of the hidden layers) dimensions. Initially, it trains a width-adaptive BERT

model able to flexibly adjust its width to suit specific tasks and hardware limitations.

Subsequently, DynaBERT extends this adaptability to encompass both width and depth

dimensions, allowing for fine-grained optimization of model size and latency. Through

sophisticated techniques such as knowledge distillation and network rewiring, DynaBERT

distills crucial insights from the full-sized model into smaller sub-networks while preserving

essential features. The aforementioned scheme empowers superior performance across

various efficiency constraints, positioning it as a versatile and potent solution for deploying

efficient language models in real-world applications. Figure 7 shows the two-stage procedure

to train with DynaBERT. First, it uses knowledge distillation to transfer knowledge from a frozen

teacher network to a student sub-network with adaptive width (DynaBERTw). Then, using

knowledge distillation it transfers knowledge from DynaBERTw to multiple student sub-

networks with adaptive both width and depth (DynaBERT).

Figure 7: The two-stage procedure to train with DynaBert.

A different work is Prune Once For All [[10] (Figure 8). By leveraging weight pruning and model

distillation techniques, the Prune OFA method inherently creates sparse pre-trained models

with specific sparsity patterns. These sparse models can be considered as sub-networks of

the original dense model, where certain connections or parameters have been pruned based

on the defined sparsity ratio. These sub-networks retain the essential information required for

efficient processing and can be utilised for inference tasks, reducing computational costs and

memory requirements while maintaining high performance. The ability to extract sub-networks

from the Prune OFA method adds flexibility and scalability to the deployment of sparse pre-

trained language models in various applications.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 20

Figure 8: The Prune OFA training scheme.

Finally, the work we deem having the greatest potential for use in the VOXReality project is

Autoformer [11], since it showcases the largest number of changeable/tunable parameters and

is shown to work for vision transformers (ViT). The key changeable parameters in AutoFormer

include depth, K-Q-V dimensions, embedding dimension, attention’s number of heads and

Multilayer Perceptron (MLP) ratio, which significantly impact model performance (Figure 9). By

allowing all these parameters to be adjusted during training, AutoFormer enables the

exploration of vastly diverse transformer structures, adapted to specific requirements.

Figure 9: Detailed transformer block in an AutoFormer structure with all changeable

parameters.

The training procedure of AutoFormer involves creating a super-network with adjustable

changeable dimensions (Table 1) and for each epoch selecting a subset of this network for

training. During training, only the weights specific to the chosen subset are updated while the

remaining weights stay constant, a practice defined as “weight entanglement” (Figure 10). This

process is repeated for each epoch until training is complete. By following this iterative

approach, the sub-networks within the super-network are effectively trained, enabling efficient

weight inheritance and the development of high-performance transformer models.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 21

Table 1: The values of the changeable dimensions, where tuples in parentheses represent the
lowest value, the highest value, and step of each tuneable parameter, respectively.

Figure 10: Classical weight sharing (left) vs. Weight entanglement of AutoFormer (right).

After training the super-network, an evolutionary search process is employed to select a

specific sub-network with the desired number of parameters. This involves evaluating the

performance of different sub-network architectures within the trained super-network and

choosing the model that achieves the highest accuracy while meeting the specified

parameters constraints. By conducting evolutionary optimization utilising typical selection,

crossover and mutation operations, the search algorithm iteratively refines the selection of

sub-networks based on their performance and parameter sizes. Through this iterative process,

an optimal enough sub-network with the desired number of parameters and accuracy arises,

ensuring a balance between model complexity and performance.

2.1.2 Standard AI Model Optimization Techniques

Traditional optimization techniques, such as quantization, pruning, graph optimization and

entropy compression are long employed to enhance the efficiency and performance of deep

learning models. At a glance, quantization refers to the reduction of the variables’ and

operations’ arithmetic precision, reducing the memory requirements and computational

complexity of the network. Pruning and graph optimization remove unnecessary connections

and parameters from the model, and entropy compression compresses the remaining

elements of the network achieving the smallest possible lossless representation of the model.

Subsequently, we will delve into the various optimization components.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 22

Quantization

Quantization can be applied at different stages of the model development process, such as:

Post-training quantization: This is the simplest and most widely used method, where

quantization is applied after the model has been trained with floating-point data. This method

does not require any re-training or fine-tuning, but it may introduce some accuracy loss due to

the reduced precision. Post-training quantization can be further divided into static and dynamic

quantization, depending on whether the activations are quantized during inference or not.

Quantization-aware training (QAT): This is a more advanced method where quantization is

simulated during the training process, and the model parameters are pre-emptively adjusted

in a way to minimize the post-training quantization error. This method can preserve the

accuracy of the original model, but it requires more computational resources and time due to

provisions. QAT can also be further divided into fake and real quantization, depending on

whether the quantization is actually performed during training or not.

Hybrid quantization: This is a hybrid method, where quantization is applied only to some parts

of the model during training, such as the weights or the gradients. This method can reduce the

memory and computational costs of training while maintaining good accuracy.

Pruning

Pruning is a technique that reduces the size and complexity of neural networks by removing

some of their components, such as weights, neurons or layers. Pruning can help improve the

efficiency and speed of Transformer models, which are widely used for natural language

processing and other tasks. There are different types of pruning techniques for Transformers,

such as:

Unstructured pruning: This technique removes individual weights from the model based on

some criteria, such as magnitude or importance. Unstructured pruning can achieve high

compression rates, but it requires sparse matrix operations which are not well supported by

most hardware.

Structured pruning: This technique removes groups of weights that have a regular structure,

such as attention heads, filters or layers. Structured pruning can preserve the original matrix

operations, which are more efficient and compatible with most hardware.

Graph Optimization

Graph optimization involves refining structurally the network's architecture to enhance

efficiency without sacrificing performance. Think of it as reorganising a cluttered workspace to

improve productivity. By identifying and streamlining redundant pathways and operations, the

optimization process reduces computational overhead and memory usage. This results in

faster processing times and more efficient resource utilisation. Ultimately, graph optimization

ensures that the neural network operates more smoothly and effectively, akin to a well-

organised workspace facilitating better workflow and in most cases is platform dependent (e.g.

ONNX).

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 23

Entropy compression

Entropy compression refers to the widely and generically used entropy-coding based lossless

compression techniques found in various zip/tar-like products. It can always be used as the

last stage packing for storing and transferring data, and thus can be implemented to reduce

the non-working (offline storage) memory of a model. It is implicitly already present in various

common model representation formats like PyTorch’s “pt” and “pth”.

2.2 VOXReality Model Optimization Approach

Our plan is to create a two-stage optimization pipeline that can be applied on the VOXReality

models either independently or in succession, resulting in ever greater efficiency gains. The

second stage will be applicable to the majority of the VOXReality provided models (namely

Optimization Methodology I) while the first stage of our pipeline (namely Optimization

Methodology II) will be applicable only to some of the Vision-Language models to be provided,

since it requires them to be built and trained in a special way.

2.2.1 Optimization Methodology I

For the second stage of our pipeline that will be applicable to the majority of the VOXReality

models, we deem to arrange sequentially all the standard optimization elements described in

section 2.1.2. As an additional step, we chose to utilise and export the widely used ONNX

framework for cross-platform model deployment. Subsequently, we present the specific order

of the operations (Figure 11) and analyse them in detail.

Figure 11: The proposed model optimization pipeline.

Steps #1 and #6, namely “model loading” and “exporting” respectively, are omitted from the

following analysis for being trivial.

Step #2 Pruning

We are currently working on applying some form of unstructured post-training pruning in the

pipeline (to be presented under the D4.2), similar to the one described in [3].

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 24

Step #3 ONNX Conversion

ONNX (Open Neural Network Exchange) serves as an open standard for representing

machine learning models through a unified set of operators that define various model

architectures. Major frameworks like PyTorch, TensorFlow, etc. support exporting and

importing models in the ONNX format, facilitating seamless model migration across different

platforms. We deem to use ONNX format as an intermediate representation inside our pipeline

for its convenience and compatibility with various plug-and-play solutions for graph

optimization, quantization and exporting. To convert our models to ONNX format, we utilise

the Optimum library.

Step #4 Graph Optimization

The process of converting our model to ONNX introduces a range of new tools for further

optimization. Optimising the ONNX graph involves various underlying techniques, with the

most prominent being the Node Fusion. Node Fusion entails consolidating multiple nodes

within the graph into a single node wherever feasible, thereby reducing the overall complexity

of the graph.

Step#5 Quantization

As we previously mentioned, downcasting involves transitioning the precision of its weights,

typically from 32-bit (FP32) to 16-bit floating point (FP16) or alternatively to 8-bit, or 4-bit,

integer representation formats. This adjustment yields several effects on the model itself.

Firstly, by storing numbers in a format that requires fewer bits, the model naturally decreases

in size. Since the model was initially trained with 32-bit precision, the shifting of operations to

fewer bits can have detrimental effects on the model’s accuracy. Nevertheless, in our

experiments we showcased that if it is done carefully, the negative effects quantization bears

can be contained to a minimal. The results of our experiments, regarding both inference time

and inference memory consumption are presented in Chapter 4.

At the end of the pipeline, the optimised model is being converted, if necessary, and exported

into the preferred representation format, either be ONNX, the standard PyTorch or the

TorchServe format.

2.2.1.1 Experimental Results

In the following paragraph, we will present the results of a preliminary study regarding the
application of Optimization Methodology I on a pre-trained version of the VL ViT-GPT2 model
for image captioning. The testbed comprises a Windows PC powered by an Intel i7 CPU with
32GB of RAM and an Nvidia GeForce RTX 3060 GPU with 12GB of VRAM. The study was
conducted on a 1000-image subset of the COCO 2014 evaluation dataset and regards two
axes: inference time and prediction quality under five widely used evaluation metrics; BLEU,
ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-Lsum. All those metrics are detailed described
in D3.1 “Advanced AI multi-model for XR analysis” [12].

The initial reference model to be passed through the optimization pipeline is in native PyTorch
format, with its parameters represented in 32-bit Floating Point (FP) precision. The other
representations tested were PyTorch in 16-bit FP, 8-bit integer and 4-bit integer, and after
conversion to ONNX format in 32-bit FP with and without graph optimization applied. Note
that, not all these representations work for both CPU and GPU, so we split the study in two
parts, evaluating separately only the applicable ones in each scenario. Table 2 presents the

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 25

inference time and evaluation scores of the model running on GPU while the Table 3 illustrates
those results when the model running on CPU.

As it was expected, the model inference processing time and prediction quality seem
correlated, as a general trend, with the details presented below. Nevertheless, at least for our
tested data, post-training optimization with the exception of the extreme 4-bit quantization
scheme does not seem to significantly hurt the quality of the model’s predictions, in some
cases even enhancing the model’s generalisation ability. In the immediate future, we plan to
conduct a similar study on an NLP multi-language translation model, extending our knowledge
on the pipeline’s total behaviour and the individual representations’ nuances.

Table 2: Inference time and evaluation scores of ViT-GPT2 captioning model running on GPU.

Model (Arithmetic
precision)

Inference
Time

BLEU
Rouge-

1
Rouge-

2
Rouge-

L
Rouge-
LSUM

PyTorch
(FP32)

168 ms 0.048 0.298 0.098 0.273 0.273

PyTorch (FP16) 127 ms 0.044 0.304 0.098 0.279 0.279

ONNX (FP32) 108 ms 0.048 0.298 0.098 0.273 0.273

ONNX Graph
Optimization (FP16)

95 ms 0.045 0.293 0.084 0.266 0.266

Table 3: Inference time and evaluation scores of ViT-GPT2 captioning model running on CPU.

Model (Arithmetic
precision)

Inference
Time

BLEU
Rouge-

1
Rouge-

2
Rouge-

L
Rouge-
LSUM

PyTorch (FP32) 539 ms 0.045 0.308 0.095 0.280 0.280

PyTorch (INT8) 318 ms 0.044 0.303 0.092 0.278 0.280

PyTorch (INT4) 173 ms 0.022 0.294 0.083 0.264 0.264

ONNX (FP32) 384 ms 0.048 0.298 0.098 0.273 0.273

ONNX Graph
Optimization (FP32)

311 ms 0.048 0.298 0.098 0.273 0.273

2.2.2 Optimization Methodology II

For the first stage of our envisioned optimization pipeline that will be applied only on some of

the Vision-Language models to be provided, we plan to develop our own variant of AutoFormer

and then extend it novelly to the decoder part of the architecture. The primary challenge of this

approach thus, is the distinction between training a ViT-GPT2 (our intention) and a ViT-only

(reference) architecture. Unlike ViT (Figure 12a) which comprises encoder-only blocks, the

ViT-GPT2 combination (Figure 12b) features both encoder and decoder blocks with the

encoder inherited from the ViT and the decoder from the GPT-2 architectures. The reference

work of AutoFormer is dealing only with the vision transformer encoder case, and thus novel

work is needed to go forward.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 26

(a)

(b)

Figure 12: A ViT architecture encoder block (a) vs. a ViT-GPT2 encoder-decoder one (b).

After training and fine-tuning the source model in the AutoFormer manner, it will be possible

to also feed it to the second stage of our pipeline to further increase its efficiency and explore

the rest of the deployment options.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 27

3 Model Deployment and Sharing

AI model deployment and sharing play a crucial role in ensuring that high-quality, robust ML

and AI innovations are effectively translated into practical, real-world applications. First,

deploying AI models on a development server is a critical phase to rigorously validate and test

the various services. Moreover, the deployment processes involve the integration of these

models into existing systems and workflows, enabling seamless operation in different

environments under different conditions. On the other hand, model sharing refers to the

processes of distributing the model itself, facilitating its wider use and development by others.

VOXReality utilizes NLP and CV advancements to develop robust AI models, aiming to

address the challenges of human-to-human and human-to-machine interaction in XR

environments. Detailed information on the development of VOXReality AI models can be

found in D3.1 “Advanced AI multi-modal for XR analysis V1” [12]. The VOXReality trained AI

models and the developed AI tools are automatically deployed in development server for

further validation and testing from the consortium members. The deployment procedure is

automated through GitLab’s CI/CD pipeline, which has been configured by VOXReality to

enable the automation of integration and deployment procedures. The pipeline utilizes GitLab

CI/CD platform's runners to execute these operations efficiently. A detailed description of

VOXReality CI/CD pipelines is provided in D2.3 “Development Infrastructure and Integration

Guidelines” [13].

Moreover, the trained models have been already deployed across three distinct use cases:

VR Conference, Augmented Theatre and Training Assistant. A detailed description of the

VOXReality application's implementation for each use case is provided in Section 4. Beyond

these initial applications, the models can also be utilized by external application developers

for a variety of tasks. To facilitate this adaptability, comprehensive deployment guidelines are

provided outlining various deployment options. Additionally, all developed VOXReality AI

models are made publicly available for sharing on the Hugging Face platform.

It is important to highlight that all research outputs of the project are publicly available,

supporting the commitment of VOXReality to open science. This ensures that stakeholders

can access and utilize these outputs. Specifically, the research outputs of the VOXReality

project can be accessed through various repositories, which are listed here:

1.

VOXReality GitLab, containing inference code and AI tools.
https://gitlab.com/groups/horizon-europe-voxreality

2.

VOXReality DockerHub, hosting docker images that encapsulate the operating
environment, the AI models and the code required to utilize the model effectively.
https://hub.docker.com/u/voxreality

3.

VOXReality HuggingFace, listing various VOXReality AI models available for
use.
https://huggingface.co/voxreality

These research outputs can be used in various combinations by end users to leverage the

VOXReality assets in their applications:

https://gitlab.com/groups/horizon-europe-voxreality
https://hub.docker.com/u/voxreality
https://huggingface.co/voxreality

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 28

1. Using GitLab Source Code to Create RESTful Services. Users can employ the

source code from VOXReality GitLab. It is recommended to create a Conda

environment including the requirements of each service. The VOXReality pretrained

models are obtained from Hugging Face. The source code from VOXReality is

designed to employ RESTful architecture, enabling the creation of services that

expose one or more endpoints. These endpoints facilitate efficient interaction with the

service, following standard communication practices between computer systems. In

VOXReality, FastAPI is used for building APIs with python.

2. Direct Use of Docker Images. Users can directly use the Docker image from

VOXReality Docker Hub or Docker Compose from VOXReality GitLab. The images

include the operating environment and the corresponding VOXReality pretrained

model, which is automatically retrieved from VOXReality Hugging Face.

3. Download Hugging Face models. Users can download and fine-tune the VOXReality

pretrained models from Hugging Face for specific tasks. Subsequently, they can use

the source code from GitLab to build services that expose one or more endpoints,

following the RESTful architecture. Alternatively, users can also build a Docker Image

using this approach.

3.1 Deployment of VOXReality AI Models in Development Server

The deployment for VOXReality in the development server is a critical part of the development

process. This stage enables the AI engineers to validate, test and refine the AI models within

controlled, real-world scenarios, providing invaluable feedback that is essential for further

enhancements. These activities can be characterized as laboratory tests and are carried out

by the consortium members, with the aim of ensuring that all the components work together

effectively. Detailed information and characteristics of VOXReality development environment

are presented in D2.3 “Development Infrastructure and Integration Guidelines” [13].

Automatic deployment to the development server is essential of the development workflow

followed by VOXReality, facilitated by the robust CI/CD pipeline. This automated system

ensures that every code commit triggers a series of events, starting with the integration of new

software features into the module’s functionality. Code changes are committed to a dedicated

development branch in GitLab, triggering the CI/CD pipeline that executes any preconfigured

unit tests. Successful tests lead to code merging into the main branch, while failures prompt

necessary revisions. The CD phase then automates packaging and prepares the software for

deployment, resulting in Docker images that are pushed to VOXReality DockerHub and then

deployed to the development server for validation and testing. The CI/CD pipeline can be

further enhanced towards security processes by applying SAST.

GitLab CI/CD can deploy jobs to build Docker images and publish them to a container registry.

The basic steps to enable GitLab CI/CD on a VOXReality GitLab project and a sample pipeline

template are described below.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 29

Dockerfile

The first step includes the creation of the Docker file in the root of the repository. An example

of Dockerfile is presented in Figure 13.

FROM tiangolo/uvicorn-gunicorn-fastapi:python3.9

RUN apt-get update && \

 apt-get -y install sudo

RUN sudo apt install nano

COPY ./app/requirements.txt /app/requirements.txt

RUN pip install -r requirements.txt

COPY ./app/main.py /app/main.py

COPY ./app/openapi.json /app/openapi.json

COPY ./app/model /app/model

CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"]

Figure 13: Example of Dockerfile.

GitLab CI/CD Pipeline

The CI/CD pipeline is defined by the .gitlab-ci.yam configuration file, which specifies the

stages and jobs that make up the CI/CD pipeline. The file is also created in the root of the

repository. The GitLab Static Application Security Testing (SAST) can be enabled by

navigating to Secure > Security Configuration, to analyse our source code for known

vulnerabilities.

In addition to the predefined Group Variables (DOCKER_USER, DOCKER_PASSWORD,

etc), the DOCKER_IMAGE repository variable is specified by navigating to Settings > CI/CD

> Variables in the repository. A new variable can be added as it is depicted in Figure 14. All

the repository variables are visualized in Figure 15.

Figure 14: GitLab CI/CD Add variable.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 30

Figure 15: GitLab CI/CD Repository Variables.

Template .gitlab-ci.yaml file

In the provided .gitlab-ci.yml template file (Figure 16), the only necessary modification is to

adjust the final command in the deploy stage to suit the specific application-model. This last

command is responsible for running the application as a Docker container:

docker run -d -p 8080:80 –name $CI_PROJECT_NAME $DOCKER_IMAGE:$CI_COMMIT_TAG

The container name is the variable $CI_PROJECT_NAME, which is the project’s name as

shown in the URL.
stages:

- build

- test

- deploy

include:

- template: Security/SAST.gitlab-ci.yml

build:

 services:

 - docker:dind

 stage: build

 before_script:

 - echo "$DOCKER_PASSWORD" | docker login --username "$DOCKER_USER" --password-stdin

 script:

 - |

 if [["$CI_COMMIT_BRANCH" == "$CI_DEFAULT_BRANCH"]]; then

 tag=""

 echo "Running on default branch '$CI_DEFAULT_BRANCH': tag = 'latest'"

 else

 tag=":$CI_COMMIT_REF_SLUG"

 echo "Running on branch '$CI_COMMIT_BRANCH': tag = $tag"

 fi

 - docker build --pull -t "$DOCKER_IMAGE${tag}" .

 - docker push "$DOCKER_IMAGE${tag}"

 rules:

 - if: "$CI_COMMIT_BRANCH"

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 31

 exists:

 - Dockerfile

build-tags:

 stage: build

 before_script:

 - echo "$DOCKER_PASSWORD" | docker login --username "$DOCKER_USER" --password-stdin

 script:

 - docker build --pull -t "$DOCKER_IMAGE:$CI_COMMIT_TAG" -t "$DOCKER_IMAGE:latest"

 .

 - docker push "$DOCKER_IMAGE:$CI_COMMIT_TAG"

 - docker push "$DOCKER_IMAGE:latest"

 only:

 - tags

sast:

 stage: test

unit-test:

 image: alpine:3.18.0

 stage: test

 script:

 - echo "Running unit tests... This will take about 10 seconds."

 - sleep 10

 - echo "Tests passed succesfully"

lint-test:

 image: alpine:3.18.0

 stage: test

 script:

 - echo "Linting code... This will take about 5 seconds."

 - sleep 5

 - echo "No lint issues found."

deploy:

 image: alpine:3.18.0

 stage: deploy

 script:

 - chmod og= $SSH_PRIVATE_KEY

 - apk update && apk add openssh-client

 - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no

$SSH_USER@$SSH_SERVER_IP "docker login -u $DOCKER_USER -p $DOCKER_PASSWORD"

 - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no

$SSH_USER@$SSH_SERVER_IP "docker pull $DOCKER_IMAGE:$CI_COMMIT_TAG"

 - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no

$SSH_USER@$SSH_SERVER_IP "docker container rm -f $CI_PROJECT_NAME || true"

 - ssh -p $SSH_PORT -i $SSH_PRIVATE_KEY -o StrictHostKeyChecking=no

$SSH_USER@$SSH_SERVER_IP "docker run -d -p 8080:80 –name $CI_PROJECT_NAME

$DOCKER_IMAGE:$CI_COMMIT_TAG"

 only:

 - tags

Figure 16: Template of .gitlab-ci.yaml file

Trigger GitLab CI/CD

The GitLab CI/CD is triggered in the following cases:

• When pushes to main, the first two stages are triggered as shown in Figure 17. The two

phases are the build and test. The build job also pushes the $DOCKER_IMAGE to

DockeHub with a tag latest.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 32

Figure 17: GitLab CI/CD Pipeline when push to main.

• When creates or pushes a tag, all stages are triggered, including build, test and deploy.

A new tag is created by navigating to code > tag > new tag, as it is illustrated in Figure

18. The build-tags job also pushes the $DOCKER_IMAGE to DockerHub with tags latest

and $CI_COMMIT_TAG, which is the commit tag name (e.g., v0.0.1). It is recommended

using only Semantic Versioning. The deploy job connects to deployment server, pull the

docker image with the specified tag and run the docker run command to start the container.

It also removes the previous version of the container if exists. All the triggered jobs are

displayed in Figure 19.

Figure 18: GitLab CI/CD Create a new tag.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 33

Figure 19: GitLab CI/CD Pipeline when create a new tag.

Summary of steps for automated deployment in development server

The above-described procedures for automatic deployment in VOXReality development

server can be summarized here:

1. Dockerfile Creation. A Dockerfile is created in the root of the repository to define the

environment in which the application will run.

2. CI/CD Configuration. A .gitlab-ci.yaml file is also placed in the root of the

repository. This configuration file defines how the GitLab Runner executes the CI/CD

jobs, orchestrating the build and the deployment process.

3. Security Measures (Optionally). Enable the Static Application Security Testing

(SAST) to analyze the code for known vulnerabilities.

4. Repository Variables. A repository variable named $DOCKER_IMAGE is specified

under Settings > CI/CD > Variables, which is used in the pipeline to refer to the Docker

Image.

5. CI/CD Pipeline Execution. GitLab CI/CD pipeline is triggered by either pushing to the

main branch or creating or pushing a new tag:

a. Push to main. The build and test jobs are triggered. After a successful build,

the Docker image, denoted as $DOCKER_IMAGE, is pushed to DockerHub

with the 'latest' tag.

b. Create or push a tag. When a new tag is created or pushed the build, test and

deploy jobs are triggered. This is achieved by code> tag > new tag. The Docker

image is then built and sent to DockerHub. Following this, the corresponding

container starts running on the development server.

3.2 Deployment Guidelines

In the VOXReality project, a widely adopted and standardized software architectural style for

communication between computer systems is following, which is the RESTful architecture as

it is described in VOXReality Integration Guidelines of D2.3 “Development Infrastructure and

Integration Guidelines” [13]. Specifically, FastAPI1, a modern, fast web framework for building

APIs in Python, is employed. In this approach, each service exposes one or more endpoints

to which clients can send requests. These endpoints are essentially URLs through which the

services are accessible. The endpoints serve as the interface for the service, allowing clients

to interact with it using HTTP methods. Therefore, the deployment of VOXReality AI models

1 https://fastapi.tiangolo.com/

https://fastapi.tiangolo.com/

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 34

is effectively managed through the creation of FastAPI applications. Details about the API calls

of each service are provided in Appendices of D3.1 “Advanced AI multi-model for XR Analysis”

[12]. Additionally, to enhance scalability, these applications can be containerized using Docker.

The VOXReality AI models can be deployed in various hardware environments following

different deployment methods. This section provides general guidelines that are applicable to

most of those models. However, considering the unique deployment requirements and

potential modifications for each AI model, it is advisable to also refer to the individual GitLab

pages of each model for more specific and targeted guidelines. On these individual GitLab

pages, one can find deployment instructions for all deployment methods. It should be noted

that all the following deployment methods create RESTful Services.

The deployment options that are described here include:

1. Deployment from Source Code

2. Containerization

a. Using single images from Docker Hub

b. Using Docker Compose

3.2.1 Source code-Based Deployment

All the VOXReality code, including the inference code and AI tools, is publicly available in the

GitLab group: https://gitlab.com/groups/horizon-europe-voxreality. The main thematic entities

developed in the VOXReality project are organized as subgroups within this main group.

Additionally, each subgroup may contain several projects, with each project providing a

specific service as well as detailed documentation in the form of README files. The steps to

set up and run the VOXReality models by utilizing the source code from GitLab repository are

described in this section. By following these steps, the VOXReality AI models are utilized, and

the local API is up and running for further development and testing, however it is important to

select the appropriate subgroup and project that meets someone specific requirements.

Moreover, those guidelines describe the general steps for utilizing the source code from

VOXReality GitLab repository accompanied either with the corresponding VOXReality AI

model in Hugging Face repository or with a locally stored model. The locally saved model can

be one that has been directly downloaded from VOXReality Hugging Face repository or that

has been finetuned.

1. Clone the Repository. Start by cloning the project repository from GitLab using the

command:

git clone https://gitlab.com/horizon-europe-voxreality/subgroup/project.git

2. Create a Conda Environment. If you have not already, create a new Conda

environment with Python 3.8 by running:

conda create --name env_name python=3.8

3. Activate the Environment. Activate the created Conda environment with:

conda activate env_name

https://gitlab.com/groups/horizon-europe-voxreality
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git
https://gitlab.com/horizon-europe-voxreality/subgroup/project.git

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 35

4. Install Dependencies. Navigate to the project directory and install the required

dependencies using pip:

cd project
pip install -r requirements.txt

5. Navigate to Application Directory. Change into the application's directory:

cd /app

6. Configure AI Model Storage Path. Set the path where the AI model is stored by

editing the config.yaml file. This path should point out to the relevant AI model

within the VOXReality Hugging Face repository, or to a local version of the AI model

that has been either directly downloaded from Hugging Face or further fine-tuned

locally.

• To do this manually, open the config.yaml file in text editor and modify

‘PRETRAINED_MODEL_NAME_OR_PATH’ with the correct path.

• Alternative, update the config.yaml file via the terminal.

7. Launch the API Locally. Start the local server with the Uvicorn command that points

to your application.

uvicorn main:app --host 0.0.0.0 --port 8000 --reload

The above command starts the Uvicorn server hosting the application defined as “main:app”.

3.2.2 Container-Based Deployment

The VOXReality CI/CD pipeline is configured to automatically build and upload Docker images

to the VOXReality DockerHub: https://hub.docker.com/u/voxreality. These images are readily

available for end users to deploy within their applications, as well as for further development

and testing, encapsulating both the operating environments and the AI models. The currently

available VOXReality docker images are presented in Figure 20.

This section provides a description of two containerization strategies for deploying VOXReality

AI models, which are:

1. Using single images for VOXReality Docker Hub repo. This approach regards the

deployment of AI models using pre-built, standalone Docker images available on

Docker Hub. Each image runs as a separate container. This approach is ideal for

directl deployments where a single container can fulfil the requirements.

2. Using Docker Compose. This method is essential when the applications require a

more complex environment, involving multiple interdependent services. It allows to

define and manage the multi-container scheme with ease, offering a more integrated

deployment process. Additionally, with this method the multiple containers are

orchestrated to work together.

https://hub.docker.com/u/voxreality

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 36

Figure 20: VOXReality DockeHub.

3.2.2.1 Deployment using Docker Hub Images

When deploying, the Docker images are pulled and run as containers in the target

environment. This containerization guarantees uniform operation of VOXReality AI models in

any environment, effectively abstracting away any discrepancies in underlying hardware or

software.

Depending on the intended hardware, different Docker commands are used to deploy

VOXReality models, tailored specifically for CPU or GPU environments. However, it is

recommended to deploy the VOXReality AI models on GPU for optimal performance.

For deployments using a CPU, the Docker command is as follows:
docker run -p 8000:8000 <name_of_image>

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 37

For deployments intended to utilize GPU, the command is slightly modified to enable GPU

access:

docker run --gpus all -p 8000:8000 <name_of_image>

The --gpus all flag assigns all available GPUs to the container, which is necessary for

models that require or significantly benefit from GPU acceleration.

In both cases, <name_of_image> should be replaced with the actual name of the Docker

image that contains the VOXReality model to be deployed. These commands ensure that the

VOXReality models are deployed in a Docker container with the appropriate hardware access

for optimal performance.

3.2.2.2 Deployment using Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications. With

Docker Compose, a YAML file, typically named docker-compose.yml is used to configure

the application’s services, networks and volumes. This file serves as a template for Docker to

understand how to run and interconnect the various containers that make up the application.

Figure 21 displays an example of the docker-compose.yml file that combines the NMT, the

ASR, and the conference agent.

version: "3.9"

services:

 conference_agent:

 image: voxreality/conference_agent:v1

 ports:

 - "8000:8000"

 env_file: ".env"

 volumes:

 - pdfs/:/app/pdfs:ro

 deploy:

 resources:

 reservations:

 devices:

 - driver: nvidia

 count: all

 capabilities: [gpu]

 restart: unless-stopped

 umlib:

 image: voxreality/draft_asr:v1

 ports:

 - "5033:5033"

 deploy:

 resources:

 reservations:

 devices:

 - driver: nvidia

 count: all

 capabilities: [gpu]

 restart: unless-stopped

Figure 21: Example of docker-compose.yml file

The docker-compose.yml files of VOXReality are configured to use Docker Images hosted

in the VOXReality Docker Hub repositories. Meanwhile, the various docker-compose.yml

files are maintained and can be founded in the VOXReality GitLab repo.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 38

To run the Docker Compose in background, the following command can be used:

docker-compose up -d

To run a specific service defined in a docker-compose.yml file, the ‘docker-compose

up’ command is followed by the name of the service that it is desired to start:

docker-compose up -d [service_name]

In this case, it is important to remember that the service names used in the above command

should match exactly as it is defined in the docker-compose.yml file.

3.3 Model Sharing

Hugging Face is a central platform in the AI community for sharing AI models, particularly

those related to NLP. It provides a central hub where developers and researchers can upload

their pre-trained models, making them accessible to the wider community. The platform

supports a collaborative environment, allowing users to contribute to the development and

improvement of models in various applications. Hugging Face allows for seamless integration

of models into various projects through its comprehensive library of 'transformers'. This library

supports the download and use of these models for NLP applications as well as the fine-

tuning. Sharing AI models through this platform offers numerous benefits, including increased

visibility, community feedback and the potential for collaborative improvements. Specifically,

sharing through the Hugging Face ensures that cutting-edge models are readily available for

use and further development. This approach not only enhances the models but also

contributes to the advancement of the field.

The trained VOXReality AI models, after undergoing extensive testing and validation, are

uploaded to the VOXReality Hugging Face Community by AI Engineers. Figure 22 illustrates

the VOXReality Hugging Face repository. This dedicated repository on Hugging Face allows

researchers to easily discover and utilize VOXReality AI models, leveraging the

comprehensive documentation provided for each model to enhance their research and

applications.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 39

Figure 22: VOXReality Hugging Face repository.

Each uploaded VOXReality model is accompanied by detailed documentation that covers

various aspects such as the model’s architecture, training data, performance benchmarks,

and intended use cases. Additionally, this documentation often includes examples and

tutorials to help users better understand and utilize the models effectively. The documentation

for each model is provided in a "Model Card," which are files that accompany the models,

offering a comprehensive overview and guidance for users. Moreover, the “Model Card”

includes metadata, providing essential information such as the model’s name, version,

language, and license. The metadata acts as an informative summary, supporting easy

navigation, AI model discovery and easier use of each model. It greatly simplifies the process

for users to search for and filter models based on specific criteria like language, model type,

or application domain, ensuring a more efficient and user-friendly experience.

The following guidelines aims to provide clear instructions on how to access VOXReality AI

models form Hugging Face repository, enabling efficient integration of those models into

various applications.

1. Create a Hugging Face Account (Optional). While this is not necessary, creating an

account on the Hugging Face can provide access to additional features.

2. Select the Desired Model. In the VOXReality Hugging Face repository, select the

model that fits your need.

3. Access the model. There are 2 ways to access the pre-trained AI models in Hugging

Face VOXReality repository.

a. Using Git to download the AI model.

Since all models on the Hugging Face are Git repositories, the desired model

can be cloned locally by running:
git clone clone https://huggingface.co/voxreality/<model_name>

b. Using Transformers Library

i. Set up the Environment. If you have not done already, create a Conda

environment and install the needed libraries. This can be done, following the

next steps:

1. Create a Conda Environment. If you have not already, create a new

Conda environment with Python 3.8 by running:

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 40

conda create --name env_name python=3.8

2. Activate the Environment. Activate the created Conda environment with:

conda activate env_name

3. Install the Hugging Face “transformer” library. This can be done by

running.

4. Load the model directly. You can directly use the model in your python

script using the following command. The specific commands for each

model are generally provided by Hugging Face under the “Use in

Transformers” section:
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer= AutoTokenizer.from_pretrained("voxreality/model_name")

model=AutoModelForCausalLM.from_pretrained("voxreality/model_name”)

pip install transformers

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 41

4 VOXReality XR Applications

The pre-trained VOXReality AI models have been deployed in three different use cases: VR

Conference, Augmented Theater and Training Assistant. Table 4 presents the VOXReality

components integrated into each use case.

Table 4: VOXReality components used in each use case.

Components

Use Case

Automatic
Speech

Recognition

Neural Machine
Translation

Vision
Language

Models

Dialogue
System

VR Conference X X X X

Augmented Theatres X X X

Training Assistant X X

This section details the design and implementation of the VOXReality applications, covering

both conceptual and practical aspects implemented by M17. Any updates and changes will be

documented in the deliverable D4.2 “Model deployment analysis V2”. Specifically, this section

includes the creation of 3D models and scenes for each XR application, as well as the

workflow of the applications. Additionally, this section discusses the necessary tools, software,

and hardware required for building these applications, along with the key algorithms and

programming techniques implemented in each solution. It also provides insights into the user

interface design. Finally, the section concludes with a brief description of how the user and

technical requirements have been met, while the detailed description will be provided in

deliverables of WP2 and WP5.

4.1 VR Conference

The VR Conference application emulates most recognisable attributes of a real-life

professional conference setting. The experience is enhanced by a real-time multilingual

translation service between users and the introduction of a dedicated, voice driven Virtual

Agent. The Agent intends to help users during their navigation to the conference by providing

navigation instructions through the virtual space, answering to questions about the

conference’s program, giving relevant info about the booths that exist in the conference area

and by giving a description about the virtual scene. The presence of the Virtual Agent is meant

to be non-intrusive to the users, who can choose to deactivate it and reactivate it at any time.

4.1.1 System Architecture and Design

4.1.1.1 3D Models and Scenes Design

From a spatial perspective, the application should simulate a real venue in a 3D world,

incorporating all essential rooms required for hosting a conference. It has been decided that,

among all available areas a conference venue may include, five of them will be designed:

1. The Lobby Room, working as the entrance to the main area of the venue.

2. The Trade Shows Area, being the main space of the conference, where exhibitor’s

booths will be placed and access to all other rooms would be possible through it.

3. The Business Room, for one-to-one communication between participants.

4. The Social Area, for 1-to-1 communication, and

5. The Conference Room, where the conference session will take place, facilitating 1-

to-many communication.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 42

To increase performance and decrease loading time, each area will be a separate 3D scene

and interconnection between scenes will be implemented through doors moving between

them.

So far, 3 out of 5 spaces (3D scenes) have been designed and developed: the Lobby Room,

the Trade Shows Area, and the Conference Room. The architectural design of the rooms

aligns with the intended usage of every space and their functionalities. Rooms that serve a

specific purpose include less spatial information to limit the level of distraction while multi-

purpose spaces, such as the Trade Shows Area, have bigger dimensions and have increased

complexity. Permitted communication type of each room will be promoted by the design in

several ways: one-to-one communication can be highlighted with the existence of tables and

chairs, and one-to-many can be introduced through an amphitheatrical allocation or the

existence of a stage.

All 3D models integrated into the application have been created following the same principles.

Their size is minimized as much as possible, by reducing the complexity of geometry and

lowering the quality of textures, to control loading delays. The acceptable level of this

optimization process is actively constrained by how realistic the final output would look like.

For this to be feasible, a low-polygon aesthetic has been selected, adopting a simpler, more

light-weighted overall style that promotes less complex geometrical shapes.

4.1.1.2 Application Workflow Diagram

The application core functionalities introduced to the users can be separated into two main

categories. The first category incorporates the communication system between the user and

their Virtual Agent, and the second one describes the pipeline needed for the real-time

translation system.

Virtual Agent Functionalities

The Virtual Agent, being represented by a virtual avatar, is a non-intrusive entity, thus, a

conversation with it is initialized only by the user. The starting point of the communication is

enabling the Virtual Agent by pressing the corresponding toggle. The instantiated Virtual Agent

entity will greet the participant with a welcoming message, in their language and will follow

them during their browsing in the VR space. The workflow is illustrated in Figure 23.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 43

Figure 23: Workflow for communication with the Virtual Agent.

The user can ask a question via a push-to-talk mechanism, that records their voice while the

Agent is active and prevents the microphone output from being networked to other

participants. This way the conversation with the Virtual Agent remains private. Finishing a

voice message triggers the first part of the workflow, that formats the microphone output to a

WAV file and sends it to the Translate Audio endpoint, which combines the ASR (Automatic

Speech Recognition) and the NML (Neural Machine Translation), along with the user’s

language and the translation’s desired language, that is always English at this point of the

workflow, as parameters. The response of this endpoint contains both the transcription and

the English translation of the voice message. In case of an English-speaking user, both the

transcription and the translation contain the same information.

The English text Is next propagated to the intent endpoint of the dialog agent that is

responsible to analyze it, retrieve its context and return relative information. This component

works as a router for the system, enabling the appropriate workflow depending on the

requested task. The user can ask the Agent about five different topics:

1. Navigation

2. Conference Program

3. Booth Details

4. Scene Description

5. General

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 44

Each topic follows a different pipeline to generate the needed knowledge, whenever it is

necessary, and serve it to the dialogue agent endpoint. In Figure 23, shapes with purple fill

indicate the existence of a dedicated pipeline before the dialogue system while those with

purple outline represent a simple propagation of the user query to the next component of the

diagram. The response of the endpoint, being a human language English text, depending on

the selected language of the user, may require to be inferenced to the text translation endpoint

in order to be transformed into the correct language. The final text output is sent to the virtual

agent and gets rendered on a text panel.

Navigation

When the application is launched, the navigation system (Figure 24) retrieves information

about the 3D scene like its dimensions, the destination names and positions, possible

anomalies of the 3D space, connecting points etc. Once this piece of information is gathered,

the application creates a symmetrical node graph that maps the geometry of the space based

on Graph Theory and is ready to receive request for navigation.

If the intent endpoint determines that the user is requesting navigation instructions, it extracts

the desired destination name from the translated text and activates the navigation system to

handle the request. Simultaneously, the system calculates the closest node to the user’s

position, and the destination node from the destination name. The Dijkstra algorithm receives

those as arguments and calculates the shortest path from the starting to the destination node,

resulting in a list containing all intermediate nodes in a sensitive order. To change this list to

an accepted format for the dialogue agent, the system computes continuous movement parts

of the navigation and the orientation of the turns and propagates them to a module that

transforms received data to the appropriate format. The line and turn calculator output is also

needed to create and export correct graphic cues (Figure 25) to the 3D scene such as arrows

and lines. The color palette of the graphic cues contains vivid shades – green lines and blue

arrows – and is selected in such a way that the cues can be easily distinguished from the rest

of the environment.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 45

Figure 24: Workflow of the Navigation System.

Figure 25: Graphic Cues of the Navigation System.

Booth Description

Information about the owner of each booth inside the trade shows area is retrieved as meta

data when entering this room and gets associated with the respective 3D objects inside the

VR scene (Figure 26). If the intent endpoint detects that the user requests additional

information about a booth in the tradeshow area, the booth management system is activated.

The request is sent to the system to determine which booth in the trade shows area is the

request's target. Once this is specified, the metadata of the 3D objects get collected and

reshaped in an accepted format by the dialog agent.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 46

Figure 26: Workflow of the Booth Description System.

Scene Description & Remaining Functionality

User queries for scene description, call the screenshot module that takes a photo of the FOV

(Field of View) of the participant and sends it to the VL Model for inference (Figure 27). The

response of the VL Model is directly propagated to the Dialogue System.

Figure 27: Workflow of the Scene Description System

The remaining functionalities, i.e. answering about the conference program and respond to

general questions do not need a specific input from the application (Figure 28). In this case,

the dialogue system is completely responsible for handling the request and the application

simply redirects the user query and user intention directly to its endpoint for inference.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 47

Figure 28: Workflow of the Conference Program and General Questioning System.

Real-time Translation

The real-time translation system is not managed by the virtual agent entity. In spaces that

allow communication between participants, when the virtual agent is not enabled the

translation system is activated in stand-by mode (Figure 29).

Figure 29: Workflow of the real-time Translation System.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 48

If a user wishes to start receiving a translation from another participant, he/she must choose

him/her as its desired target. When a user target is selected, the translation system checks

whether both communicating parties have selected their speaking language. Only when all

those conditions are met does the system start the actual translation, otherwise it remains in

stand-by mode.

To achieve translation in real time, the networked microphone output of the target user gets

recorded by the recording module and simultaneously analyzed by a silence detector. If the

detector recognizes noise from the microphone, the recording starts, and when it detects a

period of silence, the translation stops and the audio file gets translated using the Audio

Translation endpoint, having as parameters the speaking language of the source and the

target user. The response of the endpoint gets rendered directly in the 3D scene, on a panel

at the front of the target user.

The system also listens for any events that may need to change some of its inference

parameters such as, removing source and/or target language or changing their values. In case

of absence of one or more parameters, the system remains in standby mode until they change

to an acceptable value again.

The source user can always deactivate the translation or change target and the system will

automatically reset.

4.1.2 Implementation Details

4.1.2.1 Development Environment Setup

The VR Conference application is being developed based on Hubs2, an open-source web

application for interacting in networked 3D spaces, powered by Mozilla. For the development

process, the Community Edition of Mozilla Hubs is hosted, on a Kubernetes Cluster that

automatically manages all the necessary projects of the application, using Google Kubernetes

Engine3 running in a 2x2vCPU machine with 4GB of RAM. In parallel, minor changes to the

application are made directly using the Development Server of Mozilla, to avoid deployment

latency.

The VR conference, being a web application, is accessible via every web browser that

supports WebGL. The virtual reality mode of the application additionally requires a VR

Headset and a web browser supporting WebXR. Almost all modern VR Headset of the industry

are compatible with the application and in case of a standalone model, a computer is not

required, as access can be granted directly from the headset’s browser or by streaming the

application from the computer to the headsets. For development purposes Meta Quest 24 and

Meta Quest 35 are being used so due to compatibility reasons streaming the application to the

headsets requires a MS Windows OS client computer.

2 https://hubs.mozilla.com/
3 https://cloud.google.com/kubernetes-engine
4 https://www.meta.com/quest/products/quest-2/
5 https://www.meta.com/quest/quest-3/

https://hubs.mozilla.com/
https://cloud.google.com/kubernetes-engine
https://www.meta.com/quest/products/quest-2/
https://www.meta.com/quest/quest-3/

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 49

The server side of the application, named Reticulum, is written in the Phoenix framework of

the Elixir programming language. Reticulum is responsible for networking all information

except communication media such as the microphone and camera feedback. Those get

managed by a separate Node.js webRTC server based on the open source MediaSoup

project, called Dialog. Another worth mentioning project, that is part of the application, is

Spoke, a lightweighted scene editor written also in JavaScript.

All additional features implemented in Mozilla Hubs are part of modifying and extending the

Hubs client code. The client project is a mixture of JavaScript and TypeScript languages, that

manages both 3D objects and UI elements. The User Interface is written in the React.js

framework while the 3D scene is being developed by a combination of the THREE.js library

and the Networked A-FRAME framework, that works as wrapper for THREE.js elements. All

physics in the 3D world is being computed by the ammo.js library.

4.1.2.2 3D Models and Scene Creation

Designing the virtual environment of the application is conducted mostly using Blender, an

open-source 3D creation suite, to sculpt the geometry and customize the shading of 3D

objects. Creating scenes that represent different rooms of the virtual conference benefited

from the Archimesh extension, an architectural Blender tool, which allows for simple,

geometrically light-weighted room designs (Figure 30). Decorative elements of the space

including objects required for the room, such as the booths of the trade show area are either

free licensed 3D models, imported to the project from the internet or are created specifically

for the VR conference application.

Figure 30: Blender Interface for room designing.

Shading elements that don’t have materials is done using free licensed texture files from the

internet to create new ones and assign them to the models (Figure 31). However, the textures

must be of medium to low quality to avoid decreased performance on runtime.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 50

Figure 31: Blender Interface for shading.

Once a space is completed, in terms of design and shading, the models are exported as a

single file using Blender’s GLTF/ GLB exporter since GLB is the only acceptable format by

Hubs for 3D model importing. Final editing stages happen in Spoke thought which the 3D

model is imported inside a new scene and then lighting sources (Figure 32), Hubs custom

components such as connection gates with other already finished rooms and spawn points

are added to it and the scene gets published.

Figure 32: Mozilla’s Spoke Interface.

When a participant enters inside a room of the application, a random published scene is

loaded on their device. Since the scene of each room is configurable, publishing a finished

scene enables the association of it with a specific room. With this process, three different VR

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 51

conference rooms have been created associated respectively with the Lobby Room, the Trade

Show Area, and the Conference Room scene.

4.1.2.3 Core Algorithms and Techniques

Dijkstra Algorithm

The Virtual Agent assigned to each user of the application should provide efficient instructions

for navigation when requested, both in textual and graphic format. The process of calculating

the shortest path from a starting to a destination point is done by implementing the Dijkstra

algorithm [14], which is a shortest path finding algorithm based on weighted graphs.

For the Dijkstra algorithm to function properly, when a user enters a scene and the application

retrieves the properties of the room, a node grid is constructed on the fly to map the VR space.

The grid's density is a configurable value that also gets retrieved with the fetched room

properties. Extra nodes, such as available destination points of the navigation system and

hardcoded areas are appended to the node grid.

To progress from a node grid to a weighted graph, specific rules to determine adjacency are

applied to each node. The rules define the maximum distance between neighboring nodes,

forbid diagonal edges and set the weight of each edge as the Manhattan distance between

the connected nodes. The Manhattan distance of two points represents the sum of the

absolute differences of their Cartesian coordinates.

Once the graph is calculated, the system is ready to accept navigation requests. To process

the user query, Dijkstra algorithm assigns a tentative distance value to every node. The

starting node is set to 0, and all other nodes are set to infinity. A priority queue is used to keep

track of the nodes with their tentative distances, prioritizing the node with the smallest one.

While there are unexplored nodes, the node with the smallest tentative distance is selected

from the priority queue and the tentative distances of all its neighbors through the current node

are calculated, get compared with the current assigned value, and updated if the new distance

is smaller. Once a node has been explored and its neighbors are updated, it is marked as

visited to avoid redundant calculations. This process is repeated until the destination node is

reached. The algorithm's output contains the list of nodes from the source to the destination,

constructed by following the predecessor’s link from the destination node back to the source.

Silence Detector

The silence detector component participates in real-time translation functionality of the

application when one to one communication is conducted. The purpose of this component in

this workflow is to function as an event emitter, to inform the system when recordings should

start and stop. This way the application ensures that neither redundant information will be sent

for translation nor meaningful audio will be lost during the process.

To function properly, the silence detector needs to be configured with an amplitude threshold

value below which the analyzed sound would be considered as silent and a time interval to

determine the loop frequency. Through testing and validation, the silence threshold was set

to 0.6 seconds and the loop time interval to 20 milliseconds On initialization the given audio

stream is connected to an audio analyzer. At regular intervals, determined by the configuration

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 52

parameters, the audio data obtains the amplitude of the audio signal and calculates the

average value. If the average value falls below the given threshold, the system considers that

this is a silent interval. Consecutive silent intervals are tracked and if the accumulated time

exceeds a specified duration, the system marks the overall state as silent. If the amplitude is

above the threshold, the silent interval counter is reset, and the system returns to a non-silent

state.

Every time a state change occurs, this change is propagated to the Audio Recorder as a signal

to either start recording or stop and inference the audio.

Entity Component System

The software architecture of the application is based on an entity component system. Entity-

Component-System (ECS) is an architectural pattern commonly used in game development

to organize and manage the complexity of entities, their behavior, and their interactions. It's

designed to improve modularity, reusability, and performance of the application.

The application’s ECS architecture consists of three main components.

1. Entity: A general-purpose object in the 3D world. It doesn't have any inherent behavior

or data associated with it. Instead, it serves as a container for components. Entities

are represented as a unique number in the application. A basic example of an entity in

the VR Conference is the Virtual Agent of the user.

2. Component: A modular, reusable piece of functionality or data that can be attached

to an entity. Components define specific aspects of an entity's behavior or appearance.

For example, the component “Agent” is attached to the Virtual Agent entity to store

some references of other entities necessary for the functioning correctly, such as it’s

text panel.

3. System: A system is responsible for processing entities that have specific sets of

components. Systems encapsulate the logic that operates on entities with particular

component configurations. Each system focuses on a specific aspect of the application

and operates independently. The Agent System contains all functionality of a virtual

agent and every entity that has the Agent component attached to it, is processed by

this system on the main loop of the application.

4.1.2.4 User Interface Implementation

The application introduces to the user multiple UI elements both for toggling available

functionalities and to display output once available. Additional functionality is developed in a

way that tasks are activated as automatically as possible, to avoid overstimulating the user

with redundant information. However, when user requirements define that a mechanism

should not be intrusive, the presence of a UI toggle is cannot be avoided.

User Panel

The user panel (Figure 33) is the main UI element of the VR conference application. It is a

system bar that appears at the top of the user’s POV (Point-of-View) whenever they move

their head upwards and it functions as a control center, containing multiple toggle buttons

together with some extra options not related to the scope of the application. From the user

panel, it is possible to enable/disable the presence of the Virtual Agent in the 3D environment,

the Map component, and the Language Panel, the functionalities of which are discussed

below. When one of the above components is active in the virtual environment, the respective

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 53

toggle is highlighted with a blue ring, to indicate its status. Additionally, when a functionality is

not available for a specific room the saturation of its toggle is lowered to state that this option

is not provided. Extra indicating methods about the application status are implemented for the

language selection. When users select their desired language, the corresponding toggle

changes its appearance to inform them about their active selection by using language codes

(IT, ES, EL, NL, DE, EN).

Figure 33: User Panel element.

Map Component

If enabled from the user panel, a 3D map component gets renders in the 3D scene, configured

to change its position and orientation according to the user’s. The Map panel (Figure 34)

displays the top view of the scene’s room on a smaller scale, along with informative text about

the room’s objects. To enhance the experience, a system that tracks the user’s position

relative to the space, maps it to an overlaying red dot on the map to help them orient. This

tracking system is dynamic, and it gets updated in real time, so that the participants can see

the impact of their movement on the map.

Figure 34: Map Component for the Trade Show Area.

Language Panel

Behaving in a similar way to the Map component, when selected from the User Panel, a

Language Panel (Figure 35) that provides buttons for the users to select their language, is

appended to the 3D scene. The selected language represents both their spoken language

and the language of the subtitles. Each button of the panel contains an image of a flag to

express its value and if one of them gets selected, it is highlighted with the same blue ring

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 54

effect. The panel closes automatically when a selection happens to make this process less

complicated and quicker.

Figure 35: Language Panel with English language selected.

Behaving in a similar way to the Map component, when selected from the User Panel, a

Language Panel that provides buttons for the users to select their language, is appended to

the 3D scene. The selected language represents both their spoken language and the

language of the subtitles. Each button of the panel contains an image of a flag to express its

value and if one of them gets selected, it is highlighted with the same blue ring effect. The

panel closes automatically when a selection happens to make this process less complicated

and quicker.

Translate Button

In rooms where the application permits one-to-one communication and translation, every

participant has a predefined spatial border around them. The system computes the relative

distance from one participant to all the others in order to detect when someone has crossed

this border. If this happens, a button in front of every avatar inside this border with the word

“Translate” appears in the 3D scene (Figure 36). Pressing this button will make it disappear,

will activate the real time translation system and if all conditions are met, the translation will

start. While a user is selected, the application continues to calculate the relative position of

the remaining avatars inside the scene, so the option to change target becomes trivial and not

time-consuming.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 55

Figure 36: Translate Button element.

Translation & Virtual Agent Text Panel

If a target is chosen and both communicating participants have selected their preferred

languages, a text panel gets rendered in front of the target in the same position the Translate

Button was rendered previously. The value of this panel (Figure 37) contains initially a phrase

in the user’s language, informing them that the translation output will appear on this element.

If any of the two parties deactivates their languages the translation panel disappears

automatically, until a new valid change occurs.

Figure 37: Virtual Agent Panel (Left), Translation Panel (Right).

The same configuration applies to the text panel of the Virtual Agent (Figure 37), but in that

case the panel stays always visible, until the user disables the presence of the Virtual Agent.

The information that gets displayed on this panel contains greeting messages, responses of

the dialogue agent module and potential error messages.

Translate Target Indicator

When the user chooses a translation target, a small translation button (Figure 38), containing

the translation symbol, will also appear on top of their head. This button helps the user detect

their target inside the room and distinguish them from others. This could be particularly helpful

in cases where many avatars are inside the same room or when the translation panel is not

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 56

visible due to missing source or target language. When hovering over this button, the symbol

transforms into an “X” to declare that by pressing it, the selected target option will get cleared.

Figure 38: Indicator Button (Left), Hovered Indicator Button (Right).

Loading animation

The last UI element is a panel of the Virtual Agent to keep the participant updated about their

request status (Figure 39). While they are phrasing their message to their assigned Agent,

five dots with a breathing animation appear, indicating that their question is indeed being

recorded. When the recording stops, while the voice message is being analyzed and until an

output is sent back to the user, the same dots change to a loading animation, confirming that

their request has been successfully sent and it is being processed.

Figure 39: Loading animation.

The last UI element is a panel of the Virtual Agent to keep the participant updated about their

request status. While they are phrasing their message to their assigned Agent, five dots with

a breathing animation appear, indicating that their question is indeed being recorded. When

the recording stops, while the voice message is being analyzed and until an output is sent

back to the user, the same dots change to a loading animation, confirming that their request

has been successfully sent and it is being processed.

4.1.2.5 Summary of Achieved User Requirements

In summary, we have successfully met 25 of the 49 user requirements for the VR Conference

application, including 19 of the 32 high-priority and 5 of the 10 medium-priority. Users are

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 57

represented as virtual avatars; each assigned a dedicated virtual agent with a cartoonish

appearance. These agents not only provide welcome greetings but also interact with users on

demand. For navigation within the XR environment, a virtual map is available, along with clear

visual cues such as arrows, guiding users to their destinations. Furthermore, the system

provides real-time translation in five languages (DE, NL, IT, ES, EL). Those translations are

available in textual format, and subtitles can be toggled on or off. Each speaker has uniquely

assigned subtitles, ensuring a seamless and immersive experience.

4.2 Augmented Theatre

The Augmented Theatre application is intended to be used in AR-enhanced theatrical play to

provide the audience with personalized, augmented reality audiovisual and textual content to

cover accessibility and entertainment needs. According to the gathered user requirements,

the application should deliver a stream of timely, translated subtitles to the end-user in the

language of their choice (high priority), a set of virtual effects (VFX) in specific moments of the

play triggered by verbal cues as determined by the theatrical director (high priority), and lastly,

additional background information about the play upon user request (low priority) (Figure 40).

Given the capabilities of the VOXReality services, it has been also examined to incorporate

an accessibility feature of stage action (scene) description, which is treated as optional

(“could-have”) in terms of development priorities.

Figure 40: AR Theatre app features, indexed by priority, based on user requirements.

The application should target augmented reality glasses which allow the user to view the

theatrical stage with an overlay of digital 3D content. Furthermore, the application should

operate with minimal disturbance in terms of head and hand movement, without voice

commands and in low light conditions, therefore any input to the application should be made

using a dedicated controller. For those reasons, the Magic Leap 26 device was chosen.

The application should offer a personalized experience that is in sync with the theatrical play

happening on stage. Therefore, a server-client system should be implemented to ensure that

the experience can be centrally controlled, quality assured, and synced across all members

of the audience. Consequently, to achieve the best possible audio quality, the server should

be responsible for receiving the audio from the actor’s speech through dedicated

microphones, generating a transcript using the respective VOXReality model and streaming

the generated transcription to all clients. Furthermore, the server should be responsible for

receiving a visual feed of the stage from a dedicated camera, generating a verbal description

of the scene using the respective VOXReality model and streaming the generated description

to all clients. In turn, each client should be able to request a translation of the received

transcription in the user’s preferred language from the respective VOXReality model and

6 https://www.magicleap.com/magic-leap-2

https://www.magicleap.com/magic-leap-2

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 58

should use the scene description as contextual information for the translation request. Both

the received transcription and the received scene description should be used in logic running

on the client to manage the display of VFX and to respond to user requests for background

information about the play.

Finally, an important factor for the design of the AR Theatre application is the fact that it targets

mainly non-experienced in augmented reality theatre goers. As a result, it is important to

design and implement an introduction step that can cover both a familiarization process with

the overall AR technology and instructions on how to use the application itself. As part of this,

the introduction and the user customization process are designed to take place before the

start of the performance and with a staggered approach to accommodate a slow learning

curve.

4.2.1 System Architecture and Design

For the AR Theatre use case, a server-client system with a local Wi-Fi network connection

was chosen. The server runs on a GPU-enabled Windows laptop and the clients operate on

Magic Leap 2 devices which run on an Android-based OS. The detailed reasons for the

selection of the server were 1) to centralize the audiovisual input from the scene (microphone

and video input) in order to safeguard input media quality, 2) to simultaneously distribute the

output to the end-user devices in order to assure synchronicity in the audience and 3) to offset

the demanding computational needs to a more powerful device in order to avoid battery and

overheating issues on the XR devices. To accommodate these needs, the server receives

audio and video input from the stage using appropriately placed camera and microphone

devices with a wired connection for stability and speed. A USB-connected camera with a view

to the physical stage is attached to the laptop, and currently the microphone on the camera is

used to receive audio. In future stages, the theatre’s microphone setup will be used instead.

The server and the clients are connected to the same local Wi-Fi network and communicate

using a WebSocket protocol for frequent and fast communication.

In addition to the server, the GPU-enabled Windows laptop also runs locally the two required

models in containers using Docker Desktop (Speech Translation model code found here and

Vision Language/GPT2 model code found here). Running the models locally is preferred to a

remote cloud call, because the system can operate with high security standards, isolated -and

thus stable- network conditions and minimal communication latency, all of which are especially

important during the theatrical performance. The server code communicates with the models

running on the same device by making RESTful API calls to the local host which ensures the

highest possible response speed and contributes to the critical goal of overall low latency in

the provision of the subtitles. The downside of the co-existence of both the neural network

models and the WebSocket server on the same hardware device is that this solution has a

higher risk distribution and computational strain to the device. To mitigate this, an improved

resilience and recovery strategy is being designed iteratively and is informed by continuous

testing. Currently, part of the mitigation plan is to separate the WebSocket traffic from the API

call traffic, to prioritize direct API calls in the clients as much as possible, and to implement

different fallback plans on the clients in case any of the two endpoints fail to respond (e.g.,

due to an application crash or OS crash). Design choices informed by this strategy influenced

the communication architecture described below.

https://gitlab.com/horizon-europe-voxreality/multilingual-translation/speech-translation-demo
https://gitlab.com/horizon-europe-voxreality/vision-and-language-models/gpt2

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 59

The clients are receiving two main categories of messages from the server using the

WebSocket protocol: 1) information about the current ongoings of the theatrical play, which is

divided into a) a text transcript of the current actor’s speech produced by the server using the

ASR module and the microphone feed, and b) a text description of the physical stage layout

produced by the server using the VL-GPT2 module and the camera feed and 2) commands

on which features of the application to enable in the clients (e.g. 2d subs/3d subs/etc..) which

is in accordance with the performance delivery and evaluation plan.

The clients are in turn sending two main categories of messages back to the server device IP:

1) their status at every frame via the WebSocket, so that the facilitator can monitor the stability

of the system (e.g. detect a client device crash or any other lag or non-compliance), and 2) a

translation request in the user’s preferred language directly to the server’s IP and exposed

port using the RESTful API. The client application also has a fallback cloud server address in

case the local IP/port for the API calls is not replying as part of the system resilience

improvement. It should be noted that although the neural network model can also provide a

direct audio-to-text translation service, this option is not preferred for the AR Theatre use case

since the combination of a single server-located transcription call and multiple client-located

translation calls achieves the minimum possible latency when scaling up the solution for a

larger audience.

Logic related to the display of VFX and other background information about the play runs

independently in the clients. The reason for this is twofold: first, since these are low intensity

computations that the XR device can perform without strain, having them run on the client

follows the risk distribution principle. Secondly, this further allows for a diversification of the

end-user experience, especially with regards to the VFX or the user request for background

information. Although this diversification is not currently in the user requirements, this

architecture can cover future requirements where e.g., the theatrical partner may wish to

provide different content based on the declared user profile, like the age group, or other

preference settings. This kind of relies logic should typically run on an independent client-

level.

Concludingly and in high level summary (Figure 41), the AR Theatre use case incorporates

the Neural Machine Translation service (NMT), the Automated Speech Recognition service

(ASR) and the Vision Language – captioning (VL) service using the above-mentioned edge

server deployment architecture.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 60

Figure 41: Communication flow between client, server, devices and docker containers.

4.2.1.1 3D Models and Scenes Design

The AR Theatre application contains two categories of visual assets: 1) assets that create the

Augmented Reality visual effects to be used during the AR play, which are termed as AR VFX,

and 2) assets that digitally simulate the physical elements of the theatre, which are typically

not accessible or rarely accessible during development (i.e. theatrical stage and human

actors), which are termed digital simulation.

The digital simulation assets will evidently not be used during the actual performance and will

be substituted by the physical elements during the performance itself. Nevertheless, the digital

simulation is being used in the introduction and tutorial material, so that the introduction step

for the audience can take place with higher flexibility (e.g., even before entering the theatrical

hall). The digital simulation is also being used as a communication medium to discuss and

plan the physical characteristics of the play with the theatrical partners in advance.

As a sidenote, the simulated stage has smaller dimensions than the theatre stage that is

currently assigned for the actual performance to better adapt to testing in (office) areas which

are typically smaller to theatrical venues. Furthermore, the stage design and the placement of

the actors is indicative and subject to change in ways that do not impact the application.

The AR VFX category should be determined and designed by the theatrical partner and the

assigned director. For development purposes, a placeholder VFX has been created to

illustrate the capabilities of the medium. The placeholder AR VFX helps to experientially

transfer knowledge and know-how from the development team to the theatrical team in terms

of technical guidelines and expressive capabilities. In technical regards, the developed VFX

highlights the need for 3D models with an ideal mesh size, shaders with low computational

needs, materials with no reflective or transparent properties, and low-quantity particle

systems. In addition, the rendering framework of the application has been designed without

real-time lights and shadow generation, as well as no post-processing, which also indirectly

affects the VFX.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 61

Expressively, the placeholder VFX that have been developed showcase different approaches

to AR content, for example: 1) an AR visual extension to the physical stage using static models

for objects with or without animation (e.g. rocks), 2) AR narrative agents or elements using

dynamic models with movement animations (e.g. horses running, standing, grazing) and/or

environmental effects using code-based animations (e.g. waters raising or boiling) and/or

audio effects with spatialized audio sources (e.g. a thunder audio effect from far away, or a

crash audio effect from nearby), and finally, 3) an AR actor (e.g. Goddess Artemis), which is

an AR avatar that can appear on stage next to the physical actors and performs similar

functions using animations and audio sources. In the implemented example, the AR actor

performs a series of visual transformations (from deer form to human form) and is voiced by

a spatialized audio source using pre-recorded theatrical lines.

Concludingly, it should be noted that all the placeholder VFX are indicative and subject to

change both in terms of concept and appearance, according to the instructions of the theatrical

partner. The simulation scenes are presented in Figure 42-46

Figure 42: Digital stage simulation with avatars for 2 physical actors (King, Messenger) and a
VFX actor (Artemis) - front view

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 62

Figure 43: Digital stage simulation with avatars for 2 physical actors and a VFX actor –
topdown view.

Figure 44: Layout of the theatrical hall and stage chosen for the performance.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 63

Figure 45: Examples of AR VFX, extension to the physical stage with static and animated

objects.

Figure 46: Examples of AR VFX, narrative elements, environmental effects and animated
models, as described in the actor’s narration.

4.2.1.2 Application Workflow Diagram

The application supports a linear flow across three scenes: from the Home scene to the

Introduction scene and finally to the Performance scene which in turn is comprised of four (4)

sequential phases: 2D subtitles, 3D subtitles, VFX with 2D subtitles, and User combination

phase, where the user can choose to experience any of the above features again or to make

new features combinations of their own (e.g. to choose only VFX with no subtitles, or VFX with

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 64

3D subtitles). The Home and Introduction scenes are intended to be completed before the

theatrical performance starts. The progression from Home to Introduction scene is controlled

by the end-user through the user interface (e.g., with instructions to press “Ready” to proceed).

The performance scene is intended to start once the theatrical action on the stage begins. The

start of the Performance scene and the transition from phase to phase is remote-controlled by

the server through a dedicated user interface and a human facilitator. This combination is

designed so that users can go through the independent steps of the Home and Introduction

scene in their own pace but experience the phases of the Performance scene in sync with

each other with the mediation of the human facilitator through the server remote control

feature.

In the Home scene, the user is requested to select their language of preference and to proceed

to the Introduction scene. Access to the Performance scene is locked until the individual user

has completed the Introduction tutorial and/or the facilitator unlocks it through a remote-control

command. Figure 47 presents from left to right the language selection screen, scene selection

with locked access to the Performance scene (mandatory completion of Introduction scene

first) and the scene selection with unlocked access to the Performance scene.

Figure 47: Home scene screenshots.

In the Introductions scene, the content is split into two sections: a short section where the user

is shown each of the available input methods of the XR device and is required to try them out

(5 screens - Figure 48), and a longer section where the user is shown the user interface for

each of the four phases of the Performance and is required to perform any desired

customizations in advance of the performance (20 screens - Figure 49). The user

customizations include setting the font size, the z-distance (depth) of the user interface panel

from the user, the background contrast of text, and the position of the text to accommodate

better legibility based on individual preferences and visual acuity. The user customization

settings, as determined during the Introduction scene remain active in the Performance scene,

so that the user may only need to make minor adaptations during the Performance and remain

immersed in the play without the need for further interactions.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 65

Figure 48: Introduction scene – section A: instructions for input methods.

Figure 49: Introduction scene – section B excerpt: instructions for user interface.

The Performance scene (Figure 51) is compartmentalized in four phases to incrementally

present the AR features to the users and allow for improved comprehension and isolated

examination of each feature. The user combination phase is intended to allow users to

experiment freely and create a more informed opinion about their preferences. In the

Performance scene, the transition between phases is automated and remote-controlled by the

human facilitator using the server user interface (Figure 50). The transition is indicated to the

viewer by an informative panel. A small timer with a countdown indicates the duration of each

phase to the user. The user may at any point use the controller to bring up the user interface

and make adaptations to their settings (e.g. change language, change font size, etc.).

Figure 50: Transition panels.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 66

Figure 51: Performance scene sample with user customized 2D subtitles.

When the performance is over, the user is presented with an informative panel and the

application closes automatically. In the background, the client application creates a traffic log

of the content that it has received and generated (transcript, scene descriptions and

translations) with a separate file per service (one transcript log, one translation log and one

scene description log). In the next version of the application, the application will also generate

a user log with the settings customization, that is generated once after the Introduction scene

is completed and updated once again at the end of the performance.

Finally, the server application (Figure 52) currently allows the facilitator to choose an IP/port

for the WebSocket connection (with the added feature of locating the IP of the device in the

local network and assigning it automatically as the server IP) and proceeds to display a list of

all connected clients. The server application can remote controls all clients simultaneously

with a set of commands for functionalities such as localization, scene selection, phase

selection, etc. This allows for improved testing, coordinating and facilitating the experience

across multiple devices. In the next version, the server will be expanded to allow for individual

control of each client using a separate port per client, as part of the crash recovery plan.

Individual control e.g., is useful in case a client crashes and needs to be brought up to speed

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 67

with the rest of the clients and the play. The server should also be able to remote-control a

client to load the previously stored user settings to recover from a crash without loss of

information.

Figure 52: Server user interface for remote control of the XR applications.

4.2.2 Implementation Details

The development of the AR Theatre application follows an iterative approach to adapt to the

unique challenges posed by the nature of the use case. In more detail, the first version of the

application was implemented running independently on the XR client using the digital

simulated stage as visual aid and voice recordings for the actor speech as audio aid. Due to

the lack of requiring a server, this approach was favored to provide increased mobility and

ease of use for testing with a single XR device and for showcasing and communicating

purposes between the various stakeholders during the first stages of the development

process. The first version also targeted the high priority user requirements, most notably the

subtitles and the VFX.

The second version of the application was implemented using a server-client architecture as

described above but maintaining the digital simulation of the stage and the voice recordings

as a measure to facilitate user testing independently of the limited access to the theatrical

space and/or actor availability. This version covers most of the high and medium user

requirements and does not address the low priority ones (e.g. the background information

provision).

The third and final version of the application removes the digital simulation and makes use

directly of the spatial mapping and tracking of the XR device to project the augmented reality

content in predefined locations in the physical space, as well as the live feed from a

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 68

microphone input source instead of recordings. This version will cover all the user

requirements.

The first version of the application was completed in November 2023. The second version of

the application has been completed in February 2024 and at the time of the report is being

tested and finetuned. The third version of the application is due to be delivered by the end of

September 2024 with a view to a larger-scale pilot testing in spring of 2025.

4.2.2.1 Development Environment Setup

Both server and client applications have been developed using the Unity Game Engine

(version 2022) with the extension of appropriate packages, most notably the Unity XR

Management plugin and the respective Magic Leap XR Plugin, as distributed through the Unity

package manager, the Magic Leap SDK (com.magicleap.unitysdk) and the Magic Leap Setup

Tool (com.magicleap.setuptool) as provided through open repositories by Magic Leap. All the

relevant dependencies have also been installed. Visual Studio 2022 is the selected IDE for all

local code development and debugging. A private repository in GitHub has been used as the

version control system for the development process. The development process has been

tracked and managed with the help of a GitHub Project page (kanban style tool) and a Miro

Board has been created for wireframing, application flow diagramming and user feedback

gathering. Finally, development video footage and snapshots from within the Unity Editor have

been captured using the Unity Recorder package.

In addition, Android Debug Bridge (ADB) tools 7 have been used for starting, stopping,

installing, patching and debugging the applications on the Magic Leap 2, and for other data

management tasks, like transferring files. Supplementary, the Magic Leap 2 Hub software8

has been used for maintaining and communicating with the Magic Leap 2, namely updating

the development SDK, updating the OS in the devices, streaming from the devices in wired

and wireless mode.

Streaming is also important in this use case for monitoring user's actions during testing, and

for recording footage for communicating and documentation purposes. The Windows

“Connect to a Wireless Display” extra feature9 has been installed in the laptop and is being

used for wireless casting from the Magic Leap 2 to a monitor. OBS Studio has been used for

recording the monitor feed10. Finally, the built-in photo/video recording function of the Magic

Leap 2, which can be triggered by voice commands, has also been used in cases where the

application is not occupying the microphone feed of the device.

4.2.2.2 3D Models and Scene Creation

As detailed in the 5.2.1.1, the 3D models for the AR Theatre use case are currently

placeholders for development and communication purposes. For this reason, minimum

required effort has been invested in their production and a high abstraction, low polygon

approach with no textures has been adopted. The digital simulation assets, i.e. the 3D models

7 https://developer.android.com/tools/adb
8 https://ml2-developer.magicleap.com/downloads
9 https://support.microsoft.com/en-us/windows/screen-mirroring-and-projecting-to-your-pc-5af9f371-
c704-1c7f-8f0d-fa607551d09c
10 https://obsproject.com/

http://com.magicleap.unitysdk/
http://com.magicleap.setuptool/
https://developer.android.com/tools/adb
https://ml2-developer.magicleap.com/downloads
https://support.microsoft.com/en-us/windows/screen-mirroring-and-projecting-to-your-pc-5af9f371-c704-1c7f-8f0d-fa607551d09c
https://support.microsoft.com/en-us/windows/screen-mirroring-and-projecting-to-your-pc-5af9f371-c704-1c7f-8f0d-fa607551d09c
https://obsproject.com/

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 69

for the stage and the actors have been created internally using Blender, which is a free and

open-source software for 3D modelling. A subtle animation has been designed and assigned

to the digital actors to offer a sense of natural movement. The animation is being triggered

when the respective digital actor speaks according to the transcript. The placeholder assets

for the VFX have been created locally in their majority, but in this case, some assets were also

sourced from third parties. In specific, the rigged animal models (horses, bull) originate from

a commercial source11 and the stone models with their textured material were sourced from a

3D model hub and distributed with a creative commons license from their creator12.

4.2.2.3 Core Algorithms and Techniques

The full pipeline for this application involves the following parallel routines:

Subtitle routine

 The steps of this routine are:

1) Server-connected microphone → continuous audio feed → API call to the continuous

transcription algorithm of the ASR model → WebSocket message to clients with

timestamped transcription result as JSON data.

It should be noted that for the first and second version of the application, the available

transcription algorithm (/transcribe_audio_files method) receives audio recordings

instead of an audio stream. To amend for this fact, the current application can perform

a microphone recording with a customizable recording duration to simulate the

behavior of a stream-based approach. To facilitate testing and development given the

absence of actors, synthetic speech recordings of the theatrical text have been

produced with each audio file (.wav) containing a single line of the theatrical lyrics

(average duration of each file 2-3 seconds, 180 files). Even more, to better simulate

the actors, selected lines (~100) have also been recorded by human agents.

Therefore, the application during development uses the playback of the pre-generated

audio files instead of a live microphone recording as audio data for the transcription

step. Finally, an optional addition at this stage is to receive separate microphone

recordings per actor/character, so that the generated transcripts can be easily tagged

with the character's name.

2) Client message receipt → JSON deserialization of message → addition of transcription

to backlog of received messages → client callback with translation request of the latest

transcript in the user selected language, using the up to two previous transcript lines

and any available scene description as context (/contextual_translate_text).

If this method cannot produce adequate quality results for the chosen theatrical text

(to be determined after further testing and evaluation), then the alternative is to

manually produce a custom override dictionary for selected erroneous terms, use the

“/upload_terminology" method to provide the data to the model and the

“contextual_terminology_translate_text" during runtime instead of the

/contextual_translate_text.

3) Upon successful resolution of the http request → display of subtitles in the currently

enabled mode with the current user settings.

11 https://assetstore.unity.com/packages/3d/characters/animals/low-poly-animated-animals-93089
12 https://sketchfab.com/3d-models/stylized-lowpoly-rock-6e476441b5614231bf4e8de194c418d9

http://localhost:5033/docs#/default/transcribe_audio_file_transcribe_audio_files_post
http://localhost:5033/docs#/default/contextual_translate_text_contextual_translate_text_post
http://localhost:5033/docs#/default/upload_terminology_upload_terminology_post
http://localhost:5033/docs#/default/contextual_terminology_translate_text_contextual_terminology_translate_text_post
http://localhost:5033/docs#/default/contextual_translate_text_contextual_translate_text_post
https://assetstore.unity.com/packages/3d/characters/animals/low-poly-animated-animals-93089
https://sketchfab.com/3d-models/stylized-lowpoly-rock-6e476441b5614231bf4e8de194c418d9

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 70

At this stage, the application also consults the "speaker name” which is tagged to the

transcript and logged in the JSON data sent by the server. If the subtitles are in 2D

mode, the application displays the speaker's name on top of the subtitles. If the

subtitles are in 3D mode, the application enables the respective subtitle panel that is

matched to the speaker's position. If the http request fails, then the application should

attempt translation request again with fallback cloud server address. If this fails again,

the application should display nothing. Both successful and unsuccessful requests

should be added to the respective NMT data log.

The selected play for the application testing is in the Greek language and it has been observed

that the transcription of Greek contains various spelling errors, which carry over to erroneous

translations in the next step. Since the play is not improvised but a fully scripted play, an

alternative approach is examined, where the audio recording is matched to an excerpt of the

given script, instead of being transcribed live. This approach will be tested in the next version

of the application. This approach also makes the tagging of the current speaker feasible with

a single microphone channel since this information can exist in the script and be retrieved

alongside the excerpt by the matching algorithm. Finally, it should be noted that this approach

also increases human overview and control over the resulting translation which is a desired

trait for this use case.

Vision language routine

This routine consists of the following steps:

1) Server-connected camera → image capture at configurable intervals (roughly every 2

seconds, similar to the duration of an average lyrics line recording) → Vision language

captioning algorithm → WebSocket message to clients with timestamped scene

description/captioning result as JSON data.

The exact resolution of the camera image to be sent for captioning and the frequency

of the captioning call should be determined by the difference between the vision

language routine latency and the subtitle routine latency aiming for the best possible

synchronization. This needs to be determined by further testing, since the distance of

the camera to the scene is also an influential parameter.

2) Client message receipt → JSON deserialization → add to backlog of received

messages → storage of latest message as contextual information for translation calls.

Further testing which should take place in the actual conditions of the theatrical stage

should highlight if any finetuning of the model is required to produce adequate quality

results given the individual nature of the stage objects.

VFX routine

The VFX are triggered by keywords in the transcript (and not the translation) and/or the scene

description. The scanning logic is performed in the clients and is tied to a callback of the

WebSocket client upon receipt of a transcript or scene description message from the server.

Currently implemented triggers are detecting an individual word or short phrase for the first or

Nth time in the transcript (e.g., trigger VFX "a” when the phrase “πατρική κατάρα!” is heard for

the first time). The spelling errors that the ASR transcription produces for the Greek language,

make this triggering method unreliable and provide yet another reason to highlight the audio

matching approach as more suitable to the needs of the use case. Another triggering method

that is implemented is based on the index of a specific lyrics line (e.g., trigger VFX “a” when

lyrics line 173 has been spoken). This is easily feasible in tightly controlled conditions like

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 71

during development where the digital simulation with an audio recording playback per lyrics

line is used but can prove unreliable with a live microphone recording where the audio can be

cut off at random intervals. This is another problem area which the audio matching approach

can circumvent, since the lyrics index can be tagged in the script play and can be retrieved

alongside the excerpt with any other desired metadata.

With respect to the rendering of the VFX, it should be noted that the VFX can be split into user

space and world space VFX. User space VFX are positioned in a coordinate system relative

to the user and are thus consistent in their generation and rendering whether during

development with the digital simulation stage or whether during performance in the actual

theatre. Examples of user space VFX are environmental effects like rain (i.e. effects without a

clear origin point or shape), or objects whose position is sensibly related to the viewer as an

individual (e.g. making a flower appear in front of every viewer). World space VFX needs to

be positioned in a specific location in the actual physical space and that position needs to be

identical across all client applications, regardless of the viewer's position. This requires the

existence of spatial mapping and object anchoring logic in the SDK of the XR device, which

the Magic Leap 2 device supports. This feature allows the AR VFX categories such as the AR

expansion of the scene or the AR VFX actor presence. It follows that the type of VFX and their

triggering keyword can be arbitrarily combined.

In the next version of the application the following changes will be implemented in order of

priority:

1) The adoption of the audio matching algorithm should be implemented and the

transition from an audio file-based to an audio stream-based approach should be

completed.

2) The transition from the digital simulation stage to the physical stage should be

completed, specifically the code for the generation of the world space VFX.

3) Further resilience and recovery features should be designed and implemented. Two

designed features are pending for development: 1) the clients should declare their

status at every frame to the server, so that the human facilitator can monitor and

manage incidents. 2) the clients should save the user customizations in persistent

memory and expose a remote-controlled (by the server) command for reloading them

in case of an application crash.

4) The low priority user requirements should be designed and implemented, specifically

the background information call.

5) The optional features could be designed and implemented, specifically the scene

description call.

4.2.2.4 User Interface Implementation

The user interface is designed for a persona with minimal familiarity with AR technology and

the user input modalities are required to be the least intrusive for a theatrical environment.

Furthermore, the user interface should also aim to address high accessibility and inclusivity

standards. These parameters are detailed in user requirements entries 1, 4, 5, 8, 14, 15 and

27 and are the main factors which informed the design decisions for the user interface.

As a result, the input methods for the application are restricted to two button presses for

simplicity (one main and one secondary). The main method is the equivalent of the mouse

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 72

input in a traditional setup and is provided by a ray originating from the controller for pointing

and a button press (Trigger) for the clicking. This method covers most user interactions. The

secondary button press (Bumper) was intended to toggle the user interface on and off at any

point for increased immersion in the play. All input methods are shown to the user and

practiced in an interactive tutorial before the start of the performance. In addition, the

application provided a digital rendering of the controller overlayed on the physical controller,

which had the available buttons highlighted in yellow color for further guidance. It should be

added that an additional button for accessing a hidden debug menu that is known only to the

facilitator has also been implemented.

Figure 53: 3D model of the controller with the ray for interacting with the UI and the available
button highlighted in yellow color.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 73

Figure 54: Tutorial covering all the input methods (2) with a hands-on approach.

More importantly, on the user interface design itself, accessibility standards and user

customization options were implemented. Typical web-based accessibility standards dictate

font size, contrast ratio, font type, line distance, and similar characteristics that relate to

legibility. Given the fact that such standards do not exist yet for AR environments, default

values for the design of the UI were influenced by the Web Content Accessibility Guidelines

(WCAG) international standard and the user was provided with settings to adapt those values

to their preference within a reasonable range. This was considered highly important since

subtitle provision is one of the high priority user requirements for this use case and legibility is

paramount for this feature. In specific, the user was allowed to edit the font size with +/- buttons

for incremental changes, edit the distance of the entire panel with a slider, edit the opacity of

the background of the subtitles with a slider, and edit the position of the subtitles incrementally

either only vertically in the 2D mode, or vertically and horizontally in the 3D mode.

Furthermore, usability reasons led design decisions such as the size and placement of the

interactive elements (buttons, sliders). For this reason, use of typing, which would require an

on-screen keyboard with overall low usability, was minimized. To further support usability, a

visual aid for targeting (reticle) was added to the ray controller, the ray had two visual states

(active/inactive) to denote if the user was targeting an interactive element or not, and most

interactive elements had a visual response to hover events. Finally, recognizable iconography

was chosen to render most buttons as self-explanatory and thus maintain a clean look to the

UI with minimum label text.

Another important design decision for the UI was the implementation of the Immersive mode.

As mentioned, the user could toggle the UI on/off with the help of a button on their controller.

The default state of the application for the Performance scene was to start with the Immersive

mode toggled on, therefore the user interface was hidden. Given the fact that the user was

prompted to make any required adaptations during the Introduction phase, the user could

potentially have little or no reasons to bring the UI up again and therefore, view most of the

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 74

performance with no interference. Having the UI as a provisional feature during the

performance allowed the tradeoff of designing the UI elements with the highest usability level

(large buttons, central positioning, bright colors), but also with the highest occlusion level to

the theatrical stage.

Figure 55: From wireframes on Miro for discussion and feedback to implementation in the
application.

4.2.2.5 Summary of Achieved User Requirements

In summary, all the user requirements marked as High or Medium that relate to the XR

application and one requirement marked as Low have been met in the second version of the

application. The failed requirements marked as High or Medium relate to the lack of actors,

director, stage or background information about the play as determined by a writer or director

and will be targeted in the third version of the application. Therefore, the development of the

XR application for the use case theatre has from a technical point incorporated most of the

currently available resources at the time of writing.

4.3 Training Assistant

The use case focuses on the development of an augmented reality (AR) industrial assembly

training application aimed at improving the training experience through the integration of

VOXReality's automated speech recognition (ASR) model and the dialogue system.

Traditional training methods often lack interactivity and adaptability, leading to suboptimal

learning outcomes. By integrating artificial intelligence into the AR environment, this use case

seeks to create a more engaging and effective training environment. Key features of the

application include visualization and manipulation of 3D computer-aided-design (CAD) files

(Figure 56) in AR environment, an interactive virtual training assistant with real-time

performance monitoring, and a dynamic dialogue system powered by natural language

processing (NLP) and speech-to-text capabilities.

The prime constituent of the training assistant technology is the application Hololight Space

Assembly (shortly Assembly). The training process begins with the loading of a 3D CAD file,

which serves as the basis for the assembly task. Trainees are required to accurately assemble

constituent parts within the CAD object's frame. Assembly supports the loading and interaction

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 75

with previously created asset bundles that contain all the relevant scene information (CAD

file(s), tools, other objects like table or shelves), scripts for interaction with the models, menu

interaction and relevant algorithms. Performance metrics, such as time spent and incorrect

insertions, are monitored in real-time based on predefined thresholds. Additionally, Assembly

utilizes Hololight Stream, to remotely render the application from a laptop with a powerful GPU

to AR smart glasses in order to bypass the device’s rendering limitations. Combined with the

remote rendering and streaming functionalities, the AR training application (server) is hosted

on a laptop and streamed to the HoloLens 213 (client).

Figure 56: The Raptor engine CAD model which is used for the assembly task in the current
use case.

Furthermore, the Assembly application is enhanced through the integration of ASR. ASR

assists with the conversion of audio input to text (speech-to-text). The dialogue system

comprises of a Natural Language Understanding (NLU) model, responsible for comprehending

user input, and a Natural Language Generation (NLG) model, tasked with creating coherent

and meaningful responses. This allows for natural verbal interaction with the virtual assistant,

eliminating the need to learn predefined keywords. The forthcoming versions of the training

assistant will provide contextually relevant information in response to trainee inquiries.

Moreover, upon detecting the violation of the industrial assembly protocol, the training

assistant intervenes by offering support and training aids through an interactive dialogue

system. An additional feature of the training assistant includes the ability to present PDFs,

relevant videos, or specific files upon user request. This multimedia capability expands the

agent's functionalities, allowing it to provide diverse and contextually rich information in

response to user inquiries.

4.3.1 System Architecture and Design

4.3.1.1 3D Models and Scenes Design/Creation

Traditional Training Challenges

Conventional paper-based training methods fail to enhance muscle memory due to their two-

dimensional nature, resulting in the failure of comprehensive information transfer. Such

training aids primarily in the memorization of assembly sequences at the most. Conversely,

practical training utilizing authentic components facilitates the development of muscle memory

and imparts all pertinent information to trainees, including spatial placement techniques and

13 https://www.microsoft.com/en-us/hololens

https://www.microsoft.com/en-us/hololens

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 76

micro-actions essential for assembly steps. However, this approach demands substantial

resources, necessitating the provision of dedicated parts for training purposes, establishment

of specific training venues within companies, and allocation of individualized training sessions

by instructors, thereby incurring significant time costs. Moreover, on-site training is imperative

as large-scale objects, such as automobile frames, cannot be feasibly transported to trainees'

residences. External factors like global pandemics can disrupt training activities, halting

onboarding progress once restrictions are lifted. To mitigate such limitations, an application for

virtual training in XR environment with an interactive virtual training assistant was

conceptualized.

Conceptualization of the Application

The application was conceptualized to,

• Closely simulate real-world usage scenarios, incorporating elements such as shelf

configurations and object placements to enhance muscle memory, thereby enabling

trainees to intuitively identify the next component to retrieve.

• Enable trainees to interact seamlessly with each component required for assembly.

• Integrate pre-assembly steps into the primary training with virtual table, shelve and

toolkits as it aids in reinforcing muscle memory.

• Incorporate tool interaction to simulate realistic training experiences while

circumventing hazardous accidents which are otherwise probable in the real-life

scenario. This involves the interaction with indispensable tools such as a drill with

audio feedback. Incorporating sound effects further enhances immersion by

compensating for the absence of physical weight and gravity in virtual objects.

• Accurately define the intermediary steps such as visual inspections, precise object

placements, and adherence to safety or logistical procedures via QR code scanning

to ensure comprehensive training.

Inclusive Training Support Measures:

• Implementation of difficulty modes: The application features different difficulty levels

(easy, medium, hard), with easy mode providing assembly preview, visual cues to

disclose assembly sequence (Figure 57 and Figure 58), guiding lines and object

locking for enhanced guidance. Conversely, hard mode challenges trainees by

withholding visual aids and object locking.

• Various accuracy modes: Trainees can switch between simple and advanced

snapping modes, catering to varying skill levels. Simple snapping facilitates easier

attachment, while advanced snapping necessitates precise alignment for successful

object placement. Simple snap is for trainers, as it is the easiest method of attachment.

Advanced is more realistic as a nearly perfect alignment is necessary for the object to

snap into place.

• Performance indicators: The application employs color-coded highlights to denote

correct (green) and incorrect (red) object selections, aiding user comprehension.

Additionally, visual cues and colour changes at sequence flags signify completion

status, facilitating progress tracking.

• Integration of audio cues: Audio cues alert trainees when objects are correctly placed,

further enhancing the training experience.

• Pre-assembly: The application enables the user to perform pre-assembly of the

grabbable parts on the table / shelve before starting the actual assembly task.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 77

Figure 57: Parts of the CAD model on the shelve.

Figure 58: Pre-assembly of the parts with visual guiding cues.

Simplifying user interaction

Efforts are made to streamline user interaction, with features such as a hand menu (Figure

59) to minimize visual clutter in the virtual space. Ongoing and future enhancements, such as

the integration of virtual and interactive training assistant with vocal capabilities further reduce

the reliance on hand menu interactions, thereby promoting ease of use.

Figure 59: Hand menu design for different difficulty modes.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 78

4.3.1.2 Application Workflow Diagram

The VOXReality Training Assistant (Figure 60) utilizes Hololight Space assembly application

for visualization and interaction of 3D CAD files for industrial assembly training tasks. The

application will run on a computer and the data is streamed to the client device like the

Hololens2. The audio-video communication is enabled through WebRTC. The ASR

component will generate textual counterpart of the user speech and transmit it to the Dialogue

System. The Dialogue System will use NLU model to comprehend user input, and the NLG

model to create coherent responses which will then be delivered as audio responses. These

audio responses from the virtual assistant will enhance the user experience and the training

efficiency during industrial assembly training in Hololight Space Assembly which is rendered

to the client device.

Figure 60: Application workflow diagram of the training assistant.

4.3.2 Implementation Details

4.3.2.1 Development Environment Setup

For the VOXReality project, the requisite hardware and equipment are meticulously selected

to facilitate the generation, visualization, and interactive engagement with 3D content,

specifically tailored for assembly training scenarios. The foundational elements encompass

dedicated augmented reality glasses and an associated server device tasked with hosting the

AR Training application. The current choice for augmented reality glasses is the HoloLens 2,

a Microsoft product.

The VOXReality use cases demand the orchestration of a seamless flow of data, achieved

through the utilization of the AR Training application, which employs remote rendering and

application streaming through Hololight Stream. This method culminates in the streaming of

the entire application, including rendered content, to the HoloLens 2 device. To meet the

computational demands of this application, the requisite laptop must adhere to specifications,

which include an operating system compatible with Windows 10 (Build 10.0.17763), Windows

11, or Windows Server 2019, a minimum of 16 GB of memory (with a recommended 64 GB),

and a CPU selection ranging from an Intel i5 8th Gen. with 6 Cores or AMD Ryzen 7 3700X

at the minimum, to an Intel i7 12 Gen. with 12 Cores or AMD Ryzen 9 3900X for optimal

performance. GPU considerations mandate a minimum of NVIDIA GTX 1070Ti or NVIDIA

GRID for VMs, with a recommended NVIDIA RTX 3080 TI, while storage requirements

necessitate either SSD or NVMe technology.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 79

The critical link in facilitating data exchange between the AR Application and the HoloLens 2

is the WebRTC protocol. This requires a robust 5 GHz Wi-Fi connection, with a minimum

bandwidth of 20 Mbit, and a recommended bandwidth of 40 Mbit. Interaction with the AR

application is orchestrated through the laptop interface, exemplified in the context of the AI

models developed within the VOXReality project. Notably, in the future versions of the

application, the microphones embedded within the HoloLens 2 device facilitate the

transmission of speech data to the VOXReality ASR model, mediated through the AR Training

Application, wherein interactions are confined solely to the main application, rather than the

HoloLens 2 device.

4.3.2.2 Core Algorithms and Techniques

The streaming technology

The AR training application deals with computationally intense CAD files and real time

manipulation of the CAD objects in the XR environment. The mobile XR devices with their

limited computational processing power pose a challenge to the functionality and usability of

such applications. An effective approach is to outsource the rendering process, enabling

complete XR applications to be streamed from powerful local servers or the cloud. Hence the

application will leverage Unity game engine technology and incorporate the Hololight Stream

software development kit (SDK). Stream-enabled applications facilitate a client-server

environment that offloads computationally intensive rendering to a dedicated server with

robust graphics processing, streaming high-fidelity AR visualizations to client devices like the

HoloLens. Hololight Stream mediates streaming via WebRTC protocol. The streaming process

is two-fold between the server (XR application with integrated Hololight Stream plugin) and a

client Hololight Stream app (installed on the XR device). The XR client receives pixel streams

composing the content rendered by the XR application and returns sensor data back to the

application. This plugin thus enables remote rendering and full application streaming,

leveraging edge device computational and graphics processing power. Such remote rendering

and streaming circumvent limitations of XR devices.

Animations

The training assistant utilizes animations made with keyframe animations in Unity. Through

keyframe animation, the state of the object is recorded and the changes between each

keyframe is interpolated. This allows basic animation of objects within the scene which

includes object rotations and changing the position or size.

As part of the interactive assembly training, the assistant utilizes avatars to enhance the user

experience.

Language model and ASR

The application will employ the automatic speech recognition (ASR) component developed by

the consortium to transcribe users' spoken interactions with the digital assistant. The

generated text from ASR will feed into the dialogue agent (DA) component where a dialogue

system assists users in machine assembly, with English as the mediation language. The DA

component will produce English responses that utilize text-to-speech technology to provide

audio interaction. Moreover, the agent will be composed of natural language understanding to

comprehend users' spoken requests and natural language generation to produce meaningful

responses.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 80

Algorithms

Majority of the codes and algorithms cannot be openly distributed. Nevertheless, with regards

to certain functionalities, such as the microphone, the custom send functions of Hololight

Stream are used. On the Server-Side, CustomSend object in the scene in Unity has been

enabled. Associated script should be found in Packages under Hololight.Isar.Runtime in

CustomSendExample.cs. ServerApi, ApiConfig, ConnectionCallbacks and ConnectionHandle

are initialized on the Start. Currently, default message (ping) from Unity is running based on

the timer OnTimerElapsed function in CustomSendExample.cs and can be modified to the

use case. The message to be sent can be assigned under HlrCustomMessage defined under

ConnectionApi.cs. Through the ConnectionApi, PushCustomMessage the message can be

sent to the client. The type of encoding while assigning message as bytes stream must be

taken care of. Following is an example to send “OpenKeyboard” message on a button press

event to Client.

Incoming messages from the client are received under OnCustomMessageReceived event

handler and can be verified and updated further depending on the use case.

On the Client-Side message is received (for reference) under: Remote Rendering in

ImmersiveAppView.cpp under Init function in the callback m_customMessageCallback.

Furthermore, message can be verified or used to trigger an event by registering in the

register_custom_message_handler of the ConnectionApi.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 81

An Example to open System Keyboard on the HoloLens based on message from Server-Side:

This triggers function RequestUserInput() in the client to open System keyboard on the

incoming message. Currently, default message from client (pong) to the server is assigned in

the onConnectionStateChanged in the ImmersiveAppView.cpp running on timer periodically

and can be changed according to the usage. To send a message back is similar to the Server-

Side code and can be achieved by assigning to HlrCustomMessage using ConnectionApi

push_custom_message. An example of sending every character or a string on a Key down

event of the system keyboard from the client.

4.3.2.3 User Interface Implementation

The trainee’s AR experience involves the virtual manipulation of object components in the

training environment. For the virtual training, CAD files will be visualized in 3D and the parts

of an industrial model will be assembled in the correct sequence on the object’s frame. To

make the industrial training task efficient and user friendly, a training assistant is introduced

instead of the tedious hand menu interaction. The training assistant is equipped to perform

verbal interaction using language models. The current capabilities of the training assistant are

limited to operating in accordance with the directives of the trainee to skip a step or retrieve

the file names. The training assistant, however, will be equipped in the future to process audio

inputs from the trainee to launch the application, initiate training, and perform the assembly

task with perpetual aid from the training assistant until the end of the task. The response will

also be displayed as text at specific locations in the XR visual field. The ultimate output of this

use case will manifest as a voice based interactive virtual assistant for industrial assembly

training.

Using the ‘admin’ mode in the application, the user can define the order of assembly and add

additional modular steps like scanning and pushing. The order of alignment can be tracked

through tool tips linked to the individual parts of the object. Tooltips show the order of attached

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 82

parts, modular steps, and screws. The correctly attached or finished steps are marked with

green tooltips and the rest are shown in blue (Figure 61). The tooltips can be displaced by the

user, in case they overlap, or block the line of sight.

Figure 61: Tooltips displaying visual cues for correctly attached / finished steps.

The user can switch to ‘trainee’ mode to execute training in 3 different difficulty levels namely,

easy, medium, and hard (Figure 62). The precise implication of each configuration was stated

earlier.

Figure 62: Menu to configure the difficulty level of the training.

Before the assembly task, the user can incorporate the ‘table’ or the ‘shelve’ feature which

can be added from the asset-bundle and associate all the grabbable parts to it. Moving the

table allows the user to move all the grabbable objects together within or outside of the XR

visual field. The lock / unlock button located on the right side of the object provides the user

with the capability to secure the shelf or table in a fixed position (Figure 63 and Figure 64). It

is important to note that the design ensures the prevention of inadvertent shifts. Nevertheless,

should it become necessary to modify the height of the table, this can be effortlessly achieved

by unlocking the object.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 83

Figure 63: Shelve in the asset bundle, where the object lock feature is displayed on the top-

right corner.

Figure 64: Table in the asset bundle, where the object lock feature is displayed on the bottom-

right corner.

The Assembly application provides a ‘grabbing’ feature that facilitates the manipulation of

virtual objects in a user-friendly manner. We have devised a grabbing algorithm that enhances

the existing default grabbing functionality of the HoloLens 2. It detects the instances when the

virtual hand engages with the three-dimensional object's surface and links the object to the

hand when it is grabbed. Even if the HoloLens 2 loses visual contact with the hand, the system

retains this information. When the hand reappears, the object swiftly aligns with the hand's

position stabilizing the interaction with the object. This grabbing functionality is complemented

by visual and auditory cues that inform the user whether they have successfully grabbed the

object or released it. The visual cues employed depend on the difficulty level of the training,

utilizing colour codes such as green and red to indicate the correct and incorrect parts being

grabbed respectively (Figure 65).

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 84

Figure 65: Colour-code visual cues showing the correct (green) and incorrect (red) object

selection.

When the level of difficulty is chosen to be ‘easy’, the trace of the object is displayed in yellow

at its destination and required rotation (Figure 66). There is furthermore a guiding line that

extends from the part to its counterpart thereby aiding the user in identifying the precise

location.

Figure 66: Colour-coded visual cues with the object destination (yellow) and a guing line

connecting the grabbed object and its destination.

To assist the user to rotate, align and place the object, the application offers a simple and an

advanced ‘snap’ feature. The ‘simple snap’ feature is triggered when the grabbable assembly

part is connected to the invisible bounding box around the counter part by a single line. As a

result, the simple snap executes an animation that accurately positions the grabbable part to

its intended location. The 'advanced snap' feature reduces the bounding box size of the

counterpart and requires accurate alignment of the grabbable part and the bounding box with

3 lines. The snapping animation only occurs when all 3 lines are aligned accurately, and the

part reaches the fixed threshold of the bounding box. The application offers an object ‘locking’

feature which fixes the grabbable part after being placed in the solid model. The part could

however be removed and displaced again using the ‘unlocking’ feature.

Figure 67: Menu to configure difficulty levels and snap features.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 85

The iterative nature of this process ensures that all components of the CAD object are

effectively joined together. Through this process, the user acquires the knowledge and

comprehension necessary to successfully assemble the object virtually. Once this

understanding is obtained, the virtual assistant can present the user with the opportunity to

recommence the training at potentially more challenging difficulty levels. Consequently, the

user is encouraged to attempt the different difficulty levels in a sequential manner. By engaging

in this serial assembly practice and receiving ongoing support from the virtual assistant, the

user is provided with a distinct training environment. Upon completing each difficulty level, the

trainee is furnished with relevant performance metrics, such as the time taken to complete the

entire task, or the time spent on each individual step. This assisted virtual training enables the

trainee to practically assemble the industrial gadgets with efficiency in the absence of

assistance. Through the implementation of a practical and user-friendly environment, certain

elements of muscle memory for industrial assembly can be imparted. The dissemination of this

training can be effortlessly extended to various factories without the need for any hardware

equipment apart from the initial setup of this training assistant. In order to conduct ergonomic

evaluations, the virtual components have the capability to be superimposed onto an actual

framework, thereby facilitating the examination of these aspects.

4.3.2.4 Summary of Achieved User Requirements

The completed tasks in the initial phase of the project have successfully achieved their

objectives, focusing on developing an augmented reality (AR) industrial training scenario. This

includes setting up the environment, offering multiple difficulty levels, ensuring language

compatibility, and integrating interactive features such as object manipulation and user

feedback. Additionally, progress has been made in assessing user performance and

interaction with the virtual agent, although some aspects remain partially completed, such as

implementing assessment metrics and providing options for instructional delivery. However,

the overall completion of these tasks sets a solid foundation for the next phase of

development.

In the ongoing tasks, there are several open objectives awaiting completion, mainly centred

around enhancing user interaction with the virtual agent, refining the user interface, and

improving feedback mechanisms. These tasks aim to provide users with a more intuitive and

personalized training experience, including features like on-demand assistance, customizable

interfaces, and immediate feedback on task completion. Although these tasks are yet to be

finished, the completion of the interface to Hololight Space in the initial phase ensures that

incorporating these open tasks into the second iteration poses minimal risk to the project

timeline. The upcoming pilots will primarily focus on testing the general intractability with the

virtual agent, with feedback utilized to further refine usability and functionality.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 86

5 Conclusions

The work presented in this document is connected to the WP4, whose primary objectives are

to deploy the VOXReality AI models across all use case along with providing comprehensive

documentation on the various deployment methods for these AI models. Additionally, this WP

is responsible for the sharing of those models to third parties. Moreover, it involves the

investigation of the ‘once-for-all’ training scheme and the inference optimization methods. To

this end, activities regarding the implementation of XR applications are conducted in the WP4.

This document presents an overview of the SOTA methods regarding the “once-for-all”

training methods and the AI model optimization techniques. Additionally, it includes some

initial results from the application of VOXReality optimization tool. Subsequently, it presents

the VOXReality model optimization approach that is applied in VOXReality models. Regarding

the deployment of pre-trained models, the document outlines the process for deploying

VOXReality models onto a development server following the CI/CD pipeline, for validation and

testing purposes. Furthermore, it includes guidelines on the deployment of models via source

code and Docker images. The sharing of the model is achieved by Hugging Face. Lastly, it

provides the implementation details of the three VOXReality XR applications: VR Conference,

Augmented Theater and Training Assistant.

Focusing on the results achieved up to the 17th month, the proposed VOXReality post-training

optimization method generally maintains or even enhances prediction quality while reducing

the inference time. Additionally, the shift to ONNX with graph optimization further reduces

inference time, indicating its effectiveness in streamlining model performance without

significantly compromising output quality. Concerning the deployment methods of VOXReality

models, two methods are currently presented, those are source code-based and container-

based deployment. The container-based deployment involves utilizing Docker images from

Docker Hub as well as employing Docker Compose Comprehensive deployment guidelines

for these methods are provided to assist users. Additionally, Hugging Face host a dedicated

repository where the pre-trained VOXReality models are listed, each accompanied by

documentation in the form of “Model Card”.

The VOXReality models have been already integrated in the three VOXReality applications to

enhance user immersion. The VR Conference application has successfully implemented 25

out of 49 user requirements, including most high and medium-priority ones. It features virtual

avatars with dedicated cartoonish agents for interaction and navigation aids like a virtual map

and visual cues. Additionally, it offers real-time translation in five languages with customizable

subtitles for each speaker, enhancing the immersive experience. The Augmented Theater

application has fulfilled all high and medium priority user requirements and one low priority,

except those related to theatrical elements. The application can provide personalized subtitles,

virtual effects, and background play information. The Training Assistant application

establishing an environment with various difficulty levels, language support, and interactive

elements like object manipulation and feedback. Some parts, like assessment metrics and

instructional options, need completion, but the groundwork is laid for further development.

In the upcoming period, the consortium will focus on planning and execution of Pilot 1I, which

aims to test the VOXReality XR application in a real-world environment as well as to gather

feedback from the users. The planning of the pilot will be included in the D5.1 “Pilot planning

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 87

and validation V1” on M18, while the execution details and results analysis will be presented

in D5.3 “Pilot analysis & feedback V1” on M21. Moreover, we will continue to work on “once-

for-all” training concept and model optimization techniques. Our goal is to provide a tool that

facilitates the once-for-all training method and to expand the CLI tool for inference

optimization. This has as goal to decrease the model size and processing demands, ensuring

efficient and effective use of AI models during the deployment to various hardware

environments, including those with limited resources. The deployment methods and their

accompanying guidelines will be expanded to provide more options. The XR application will

be finalized considering both the user and technical requirements as well as the received

feedback from Pilot 1. Any potential changes and additions will be documented in the second

version of this deliverable with title “D4.1.2 – Model deployment analysis V2” on M32.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 88

6 References

[1] H. Cai, C. Gan, T. Wang, Z. Zhang and S. Han, “Once-for-all: Train one network and

specialize it for efficient deployment,” arXiv preprint arXiv:1908.09791, 2019.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and

I. Polosukhin, “Attention is all you need,” Advances in neural information processing

systems, vol. 30, 2017.

[3] W. Kwon, S. Kim, M. W. Mahoney, J. Hassoun, K. Keutzer and A. Gholami, “A fast

post-training pruning framework for transformers,” Advances in Neural Information

Processing Systems, vol. 35, pp. 24101-24116, 2022.

[4] S. Yu, T. Chen, J. Shen, H. Yuan, J. Tan, S. Yang, J. Liu and Z. Wang, “Unified visual

transformer compression,” arXiv preprint arXiv:2203.08243, 2022.

[5] X. Wu, Z. Yao, M. Zhang, C. Li and Y. He, “XTC: Extreme Compression for Pre-trained

Transformers Made Simple and Efficient,” Advances in Neural Information Processing

Systems, vol. 35, pp. 3217-3231, 2022.

[6] J. Zhang, H. Peng, K. Wu, M. Liu, B. Xiao, J. Fu and L. Yuan, “Minivit: Compressing

vision transformers with weight multiplexing,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp. 12145-12154.

[7] P. Ganesh, Y. Chen, X. Lou, M. A. Khan, Y. Yang, H. Sajjad, P. Nakov, D. Chen and

M. Winslett, “Compressing large-scale transformer-based models: A case study on

bert,” Transactions of the Association for Computational Linguistics, vol. 9, pp. 1061-

1080, 2021.

[8] H. Cai, C. Gan, T. Wang, Z. Zhang and S. Han, “Once-for-all: Train one network and

specialize it for efficient deployment,” arXiv preprint arXiv:1908.09791, 2019.

[9] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen and Q. Liu, “Dynabert: Dynamic bert

with adaptive width and depth,” Advances in Neural Information Processing Systems,

vol. 33, pp. 9782-9793, 2020.

[10] O. Zafrir, A. Larey, G. Boudoukh, H. Shen and M. Wasserblat, “Prune once for all:

Sparse pre-trained language models,” arXiv preprint arXiv:2111.05754, 2022.

[11] M. Chen, H. Peng, J. Fu and H. Ling, “Autoformer: Searching transformers for visual

recognition,” in Proceedings of the IEEE/CVF international conference on computer

vision, 2021, pp. 12270-12280.

[12] VOXReality, “D3.1 - Advanced AI multi-modal for XR analyis V1,” 2023.

[13] VOXReality, “D2.3 - Development infrastructure and integration guidelines,” 2023.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

mathematik, vol. 1, pp. 87-290, 1959.

01 MARCH 2024 DEPLOYMENT ANALYSIS V1/ 89

01 MARCH 2024 VOICE DRIVEN INTERACTION IN XR SPACES / 90

